Adoption of New Technology: A View from Multiple Sides

Daniel S. Oh, MD, FACS

Associate Professor of Surgery, University of Southern California Medical Director, Thoracic Surgery, Providence-St. Jude Medical Center VP & Associate Medical Officer, Intuitive Surgical

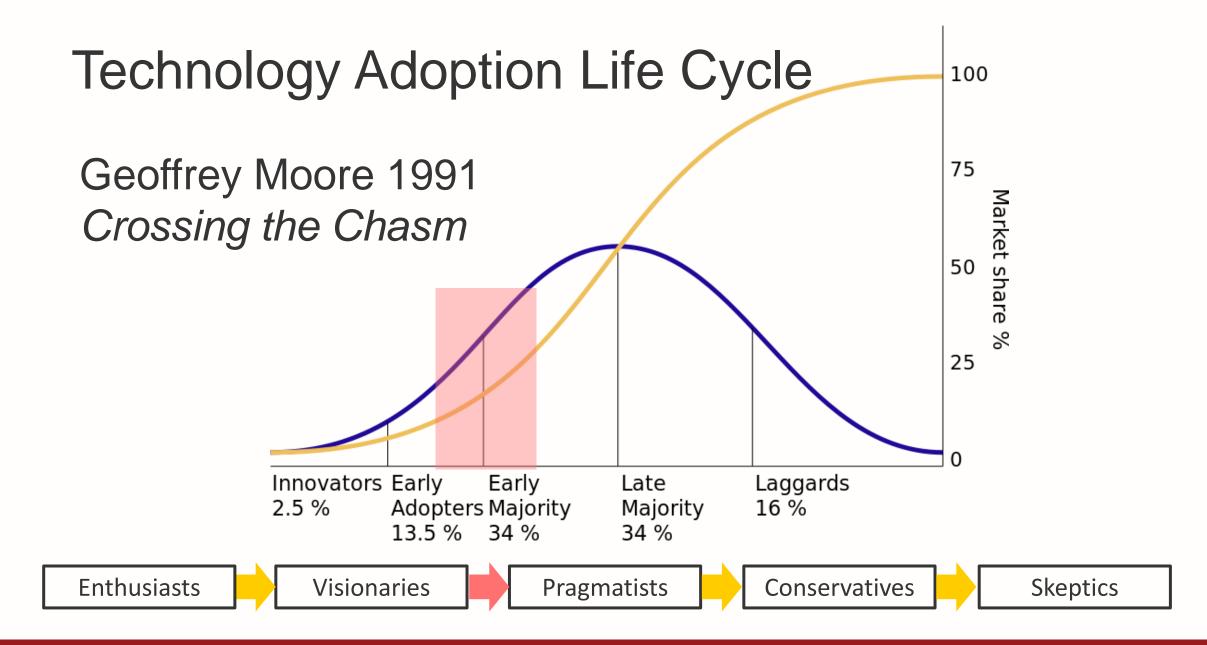
General Thoracic Surgery Club March 11, 2023

Disclosure

- Dual employment
 - University of Southern California
 - Intuitive Surgical: Medical Affairs

Disclosure

- Dual employment
 - University of Southern California
 - Intuitive Surgical: Medical Affairs


The content of this presentation does not promote any specific company or product

Objectives of this Talk

Different perspectives

- FDA
- Industry
- Surgeon
- Hospital
- Academia
- Patient

Keck School of Medicine of USC

Everett Rogers 1962 Diffusion of Innovation

The Problem: Surgery is Ubiquitous...

- 40-50 million procedures in U.S. every year¹
- 313 million procedures globally every year²
- In contrast, 16.4 million flights handled by FAA in U.S. every year³

Dobson et al. Intl J Surg 2020;81:47-54
Meara et al Lancet 2015;386:569-624
FAA.gov

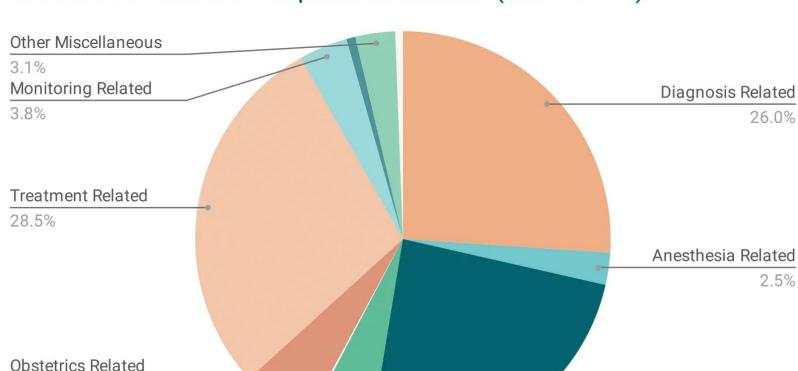
And Post-Op Mortality is High

	Deaths per year	Year	Percent Total Deaths	Reference
Total All-Aged Deaths	2,839,205	2018		9
Cardiovascular and Stroke	793,840	2017	28%	CDC
Cancer	599,108	2017	21%	CDC
Injury	169,936	2017	6%	CDC
Major Surgery (inpatient)	660,000	2006	23%	4, 8
(1.32% of 50M)				

Data from Centers for Disease Control (CDC) website.

*vs. 2 fatalities from US air carriers in past 10 years

Keck School of Medicine of USC


Dobson et al. Intl J Surg 2020;81:47-54
airlines.org

Surgeons are Frequently Sued Medical Liability Claim Frequency, 2016

	Percentage of Physicians			Number of
		Sued	Sued in Last	Claims per 100
Specialty	Ever Sued	2+ Times	12 Months	Physicians
	(1)	(2)	(3)	(4)
Anesthesiology	36.3%	17.9%	1.3%	64
Emergency medicine	51.7%	25.7%	3.0%	108
Family practice	33.4%	13.8%	1.1%	55
General surgery	63.2%	50.1%	8.0%	205
Internal medicine	31.7%	14.8%	3.1%	57
Internal medicine sub-specialties	25.5%	11.0%	1.0%	44
Obstetrics/Gynecology	63.6%	44.1%	6.7%	162
Pediatrics	17.8%	6.0%	1.0%	28
Psychiatry	16.1%	5.9%	1.9%	25
Radiology	37.6%	21.4%	0.4%	82
Surgical sub-specialties	47.4%	25.0%	3.3%	110
Other specialties	19.5%	5.8%	2.5%	29
Observations	3211	3145	3147	3145

Source: Author's tabulation of data from the AMA's 2016 Benchmark Survey.

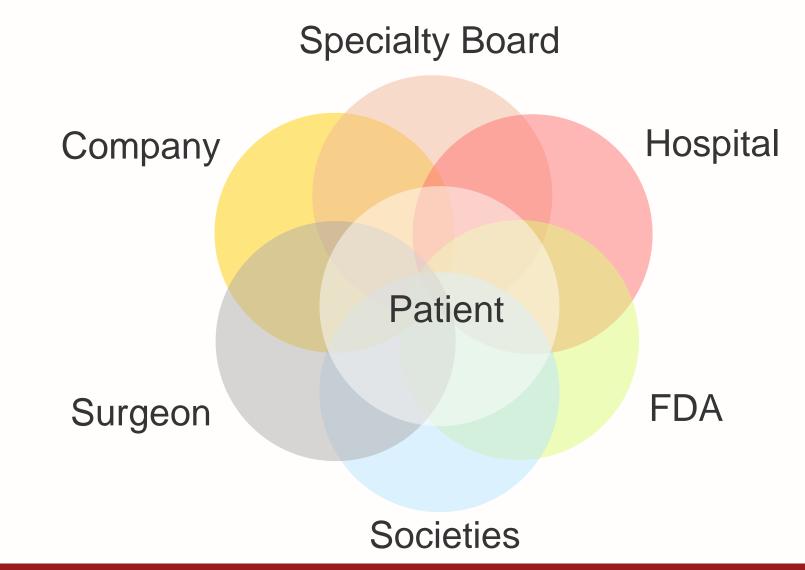
80,000 U.S. Medical Malpractice Suits Per Year

Causes of medical malpractice claims (2017-2021)

Keck School of Medicine of USC

5.4%

5.1%


Medication Related

justpoint.com

Surgery Related

24.1%

Patient Safety First

FDA Perspective

FDA

- Center for Devices and Radiological Health (CDRH)
- FDA approval is necessary to market and sell a medical device in the U.S.
- Company must provide evidence the device is safe and effective
- FDA does not regulate the practice of medicine

Step 1: Classify the Medical Device

Medical Device Amendments of 1976

- Class I: Minimum potential harm (47%)
 - Elastic bandage
- Class II: Moderate potential harm (43%)
 - Robotic surgical system
- Class III: Sustain or support life, are implanted, or present potential unreasonable risk (10%)
 - Implantable pacemaker

Step 2: Choose the Premarket Submission Pathway

Section 510(k) Food, Drug, and Cosmetic Act

- Premarket Notification (PMN) or 510(k): demonstrate the device is substantially equivalent (as safe and effective) to a device already on the market
 - Class II
- Premarket Approval (PMA): a new product containing new materials or differ in design to other products on the market
 - Class III

Step 3: Prepare Appropriate Information for the Premarket Submission

- Evidence and data compiled by the company
- Can request feedback for potential application
 - Q-Submission Program (Q-Sub)
 - System to track interactions
 - **Pre-Sub**: formal written request for feedback based on specific questions, including evidence requirements
- Decision within 60 days of submission

Investigational Device Exemption (IDE)

- Clinical study approved by FDA to collect safety and effectiveness data
- Data is used to support either PMA or 510(k)
- Investigator-led or industry-sponsored
- Use of device is limited to sites and time period described in the IDE study
- Requires IRB and often CMS approval

Step 4: Comply with Applicable Regulatory Controls

- Register device with FDA
- FDA approval with labeling for intended use and IFU (instructions for use)
- Special Controls class II devices
 - Performance standards
 - Post-market surveillance
 - Patient registries
 - Special labeling requirements

Industry Perspective

Industry Responsibilities

- Need FDA approval of the device for its specific indication. Otherwise, a company cannot market, sell, train, or support use of the device
- Technical & human factors data
- Safety and efficacy data
- IFU (instructions for use) delineate proper way to set up and use device

How Does a Company Prove the Device is Safe and Effective?

- Bench research
- Cadaver and animal studies
- Technical validation and verification
- Human factors
- Clinical study or clinical data
 - Confirmatory study
 - Real world evidence
 - RCT

Example of Robotic-Assisted Surgical System

- Generally 510(k) but may be PMA
- Labeling approval for "general thoracoscopic surgical procedures"
- Demonstrate it has significant equivalence to the predicate device (thoracoscopic/VATS)
- For each specific indication must be cleared as a separate 510(k) labeling modification (lobectomy, thymectomy)
- Umbrella vs. covered procedures

Training Responsibilities

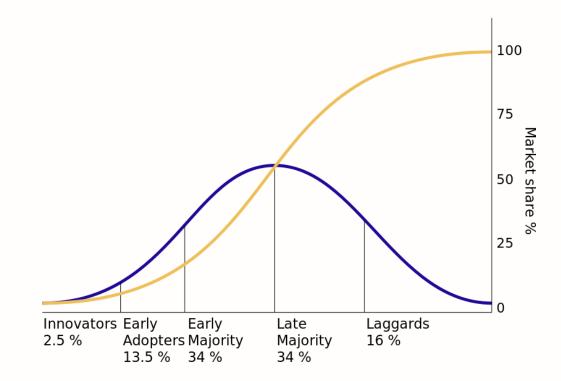
- A device company cannot teach the practice of medicine, i.e. how to operate
- Technology training is led by company (non-surgeons)
 - Designed by engineers, human factors, surgeons, and educators
 - How to use the device: controls, buttons, etc.
- Clinical application training (use of the device in a specific procedure) is led by surgeons

Example of Training Breakdown

Industry-Led

- On-line learning
- Hands-on in service
- Simulation
- Dry lab model training
- Wet lab model training

Surgeon-Led

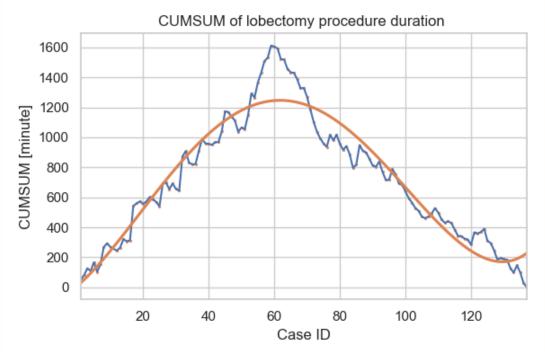

- Case observations
- Videos and lectures
- Procedural training
 - Wet lab models
 - Animal
 - Cadavers
- Proctoring/preceptoring

Surgeon Perspective

Surgeon Perspective: Adopting New Technology

Many Scenarios:

- Device pre-existing or new?
- Procedure on- or off-label?
- Risk high, medium, low?
- IRB yes or no?
- IDE yes or no?
- Where are you on the adoption curve?

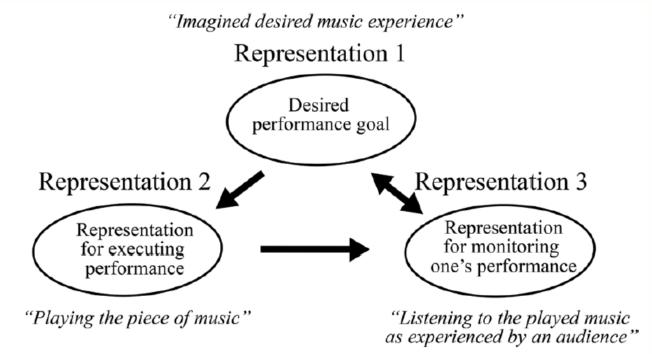


Requirements for Surgeon to Adopt a New Technology

- Board-certification
- Credentialed at hospital
- Completed industry-led technical training
- Complete surgeon-led operative training
- Proctoring or preceptoring (hospital regulated) for privileging

Learning Curve

- Patient selection is critical early in one's experience
- Surgery is a team sport
- Deliberate practice
- Monitor outcomes
- Leadership support is critical



My Learning Curve Through First 140 Robotic Lobectomies

Developing Expertise: Anders Ericsson

Mental Representations

- 1. Observing and defining expert performance
- 2. Translating observation into actions
- 3. Monitoring performance

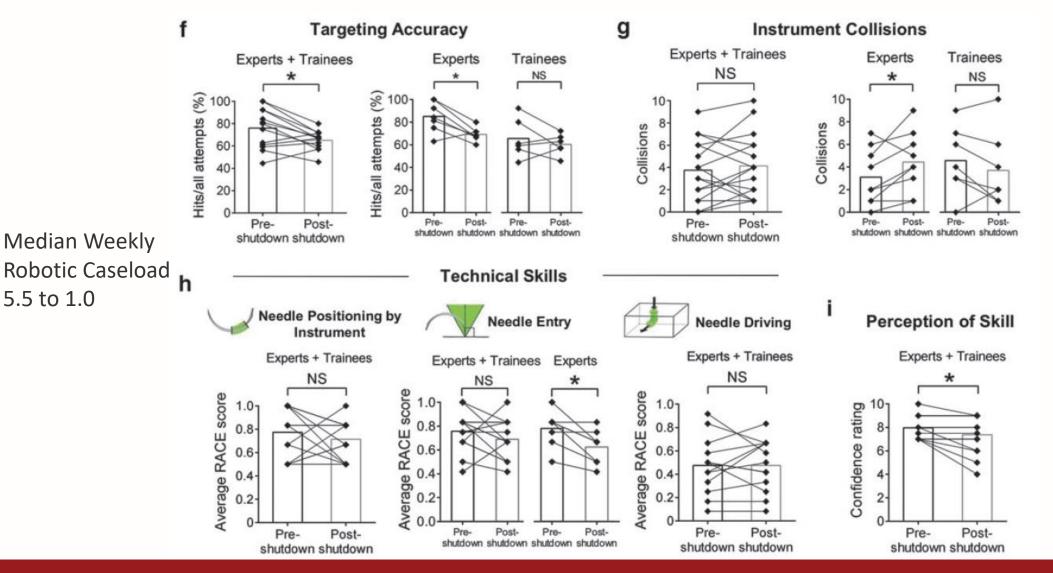
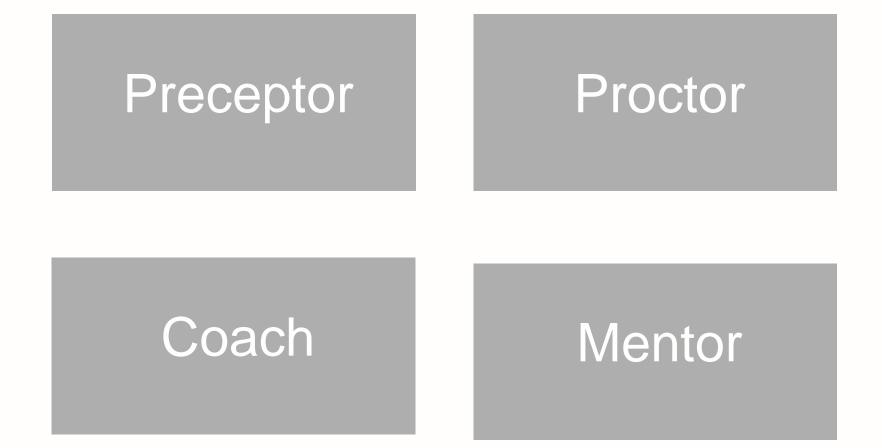


Figure 2 Three types of internal representations that mediate expert music performance and its continued improvement during practice. (Adapted from Figure 6, Ericsson KA. The scientific study of expert levels of performance: General implications for optimal learning and creativity. High Ability Stud. 1998;9:92.)

Keck School of Medicine of USC

Ericcson Academic Med 2015;90:1471-86


Robotic Console Skill Decay is Real

Keck School of Medicine of USC

Der et al. J Endourol 2021;35:888-90

Intervention for Success

Keck School of Medicine of USC

Sachdeva A. JSO 2021;124:711-21

Community Support and Feedback

- Social media
- Society meetings and programs
- Industry
- Technology
 - Remote case observations
 - Teleproctoring
 - Video review

Off-Label Use

- FDA does not regulate the practice of medicine
- Could expose the surgeon and hospital to medicolegal liability
- May need IRB
- May need IDE (especially for company training and support)

Hospital Perspective

Credentialing vs. Privileging

Credentialing:

Education, experience, and training substantiated to become appointed member of a hospital staff

Privileging:

Granted permission by hospital to perform a procedure or a specific service

Robotic Surgery Credentialing

- Institute for Surgical Excellence (ISE)
- 28 robotic surgery experts
- Delphi process
- >80% agreement: consensus

Expert Consensus Recommendations for Robotic Surgery Credentialing

Dimitrios Stefanidis, MD, PhD,*⊠ Elizabeth M. Huffman, MD,* Justin W. Collins, MBChB, MD,† Martin A. Martino, MD,‡ Richard M. Satava, MD,§ and Jeffrey S. Levy, MD¶

Objective: To define criteria for robotic credentialing using expert consensus.

Background: A recent review of institutional robotic credentialing policies identified significant variability and determined current policies are largely inadequate to ensure surgeon proficiency and may threaten patient safety. Methods: Twenty-eight national robotic surgery experts were invited to participate in a consensus conference. After review of available institutional policies and discussion, the group developed a 91 proposed criteria. Using a modified Delphi process the experts were asked to indicate their agreement with the proposed criteria in three electronic survey rounds after the conference. Criteria that achieved 80% or more in agreement (consensus) in all rounds were included in the final list.

Results: All experts agreed that there is a need for standardized robotic surgery credentialing criteria across institutions that promote surgeon proficiency. Forty-nine items reached consensus in the first round, 19 in the second, and 8 in the third for a total of 76 final items. Experts agreed that privileges should be granted based on video review of surgical performance and attainment of clearly defined objective proficiency benchmarks. Parameters for ongoing outcome monitoring were determined and recommendations for technical skills training, proctoring, and performance assessment were defined.

Conclusions: Using a systematic approach, detailed credentialing criteria for robotic surgery were defined. implementation of these criteria uniformly across institutions will promote proficiency of robotic surgeons and has the potential to positively impact patient outcomes.

Keywords: credentialing criteria, Delphi process, expert consensus, robotic surgery, surgeon credentialing, surgeon proficiency

(Ann Surg 2022;276:88-93)

procedures and have cautioned that the ongoing diffusion of this relatively new technology should be monitored so that it does not lead to diminished patient safety.^{3,4} Indeed, prior studies have suggested there may be an increased risk for patient complications during the introduction of new technology, including robotic surgery, though this remains to be identified in prospective trials.^{5–7}

To ensure safe surgical practice and safe introduction of new technologies, the Joint Commission requires institutions to have specific credentialing policies the development of which, however, is the responsibility of the institution.⁸ In 2013, the US FDA conducted a small-scale survey of 11 surgeons which revealed a lack of standardization in the credentialing processes at their respective institutions.⁹ Specialty societies have suggested relevant guide-lines to address gaps and lack of standardization in robotic surgery privileging and credentialing, however, none of these are uniform and the current uptake of such guidelines by hospital credentialing committees is unknown.^{10–14} Further, existing guidelines tend to be specialty specific, which may limit their generalizability.

Indeed, in a recent review of a representative sample of 42 US hospital credentialing policies by our group, we identified significant variability in credentialing policies for robotic surgery.¹⁵ Importantly, existing credentialing policies were deemed inadequate to ensure surgeon proficiency and the development and implementation of standardized credentialing guidelines was recommended to optimize patient safety and outcomes.¹⁵ There are legal implications from the lack of a standardized approach, and it is therefore not surprising that recent lawsuits have argued that institutional robotic surgery credentialing processes are not sufficient to ensure patient safety.¹⁶

As a response to this existing lack of standardization for credentialing in robotic surgery that may threaten patient safety

Initial Credentialing Requirements

Initial Credentialing Requirements	% Agreement	Round
Board eligibility or specialty certification	90.0%	1
Chair support letter	82.6%	2
Basic cognitive training in robotic surgery	100.0%	1
Cognitive training on specific robotic	96.7%	1
device for which requesting privileges		
Specialty specific cognitive training on robotic surgery	91.3%	
Basic robotic technical skills training	100.0%	1
Robotic device specific technical training	100.0%	1
Specialty specific skills training on robotic procedures	83.3%	1
Specialty specific non-technical skills training in robotic surgery	91.3%	
OR observation of procedure specific cases for which requesting privileges	90.0%	1
Initial cases preceptored/ proctored (both basic and advanced)*	93.3%	1

Initial Credentialing Requirements	% Agreement	Round
Initial cases performed with experienced co-surgeon with surgeon seeking privileges in an	86.7%	1
assistant role until proficiency		
demonstrated. Subsequent cases		
performed as primary surgeon		
with co-surgeon in assistant role again until proficiency demonstrated		
Review of first several cases performed by an independent expert	93.3%	1
Random audit of initial cases via video and chart review	80.0%	1
Objective procedure-specific performance benchmarks met/ proficiency demonstrated outside the OR	100.0%	1

Keck School of Medicine of USC

Stefanidis et al. Ann Surg 2022;27:88-93

Re-Credentialing Requirements

Maintenance of Privileges Requirements	% Agreement	Round
Annual robotic case volume	90.0%	1
Complication rates	96.7%	1
Estimated blood loss	92.6%	3
Operative time and total room time	83.3%	1
Return to the OR	93.3%	1
Conversion rate to open surgery	86.7%	1
Readmission rates	86.7%	1
Operative costs	85.2%	3

These parameters should be monitored after initial credentialing and have expected/ acceptable performance criteria set; if such criteria are not met a surgeon performance audit should automatically be triggered; random audits of surgeon should also be routinely performed.

OR, operating room.

Additional Recommendations: Credentialing

Additional Recommendations	% Agreement	Round
Simulation should be used if performance concerns arise after review: both for assessment	90.0%	1
and training		
Separate credentialing for basic and advanced robotic procedures	91.3%	2
Proficiency should be demonstrated in basic cases first before advanced privileges	83.3%	1
approved		
Digital media policy should exist in all institutions to allow for video review of	90.0%	1
performance as an ongoing assessment tool		
A dedicated Robotic Steering/Program committee should be required at each institution;	86.7%	1
they should be responsible both for the credentialing of surgeons and the OR team		
Random performance audits can be done via video review of surgeon's procedures	93.3%	1
Video review should be done by independent entity	90.0%	1
Assessment of proficiency should be done by procedural video review and using objective	100.0%	1
metrics		
A national independent database for robotic surgery outcomes should be created	83.3%	1
Surgeons should share the cost of development and maintenance of this database	82.6%	2
Industry should share the cost of development and maintenance of this database	87.0%	2 2
Industry should share the cost of ensuring surgeon proficiency	82.6%	2
Hospitals should share the cost of ensuring surgeon proficiency	82.6%	2
Instrument tracking (automated performance metrics) is beneficial for assessing surgeon	95.7%	2
proficiency; eye tracking is not		
Objective proficiency metrics should be developed for each procedure and standardized to	93.3%	1
be applicable to all robotic platforms		
The OR team besides the surgeon should also participate in credentialing for participation	83.3%	1
in robotic procedures		
Evaluation of surgeon performance by an independent evaluator using OSATS is	80.0%	1
appropriate		
Preceptors should be different than proctors	92.6%	3
Preceptors/ proctors should be able to participate in procedures if needed for training and	90.0%	1
patient safety reasons		
Industry should not select proctors*	93.3%	1
Proctors should be specialty specific	90.0%	1
Proctors should be independent	95.7%	2
Specialty specific procedure training should not be developed by device makers	90.0%	1
Device training should be developed by device makers	86.7%	1
Device training developed by industry should be peer reviewed by specialty societies	95.7%	2
Advanced training should be developed by non-profit education organizations	80.0%	1

*National specialty societies should select proctors reached 74.1% agreement.

Keck School of Medicine of USC

Stefanidis et al. Ann Surg 2022;27:88-93

"[L]ittle to no quality data are available for most new technology and advanced procedures to support assigning a specific number of cases for privileging." The Society of Thoracic Surgeons Expert Consensus Statement: A Tool Kit to Assist Thoracic Surgeons Seeking Privileging to Use New Technology and Perform Advanced Procedures in General Thoracic Surgery

Shanda H. Blackmon, MD, MPH, David T. Cooke, MD, Richard Whyte, MD, Daniel Miller, MD, Robert Cerfolio, MD, Farhood Farjah, MD, MPH, Gaetano Rocco, MD, Matthew Blum, MD, Stephen Hazelrigg, MD, John Howington, MD, Donald Low, MD, Scott Swanson, MD, James I. Fann, MD, John S. Ikonomidis, MD, PhD, Cameron Wright, MD, and Sean C. Grondin, MD, MPH

Division of General Thoracic Surgery, Mayo Clinic, Rochester, Minnesota; Section of General Thoracic Surgery, University of California, Davis Medical Center, Sacramento, California; Division of Thoracic Surgery, Beth Israel Deaconess Medical Center, Boston, Massachusetts; Division of Thoracic Surgery, WellStar Health System, Marietta, Georgia; Division of Cardiothoracic Surgery, University of Alabama at Birmingham, Birmingham, Alabama; Division of Cardiothoracic Surgery, University of Washington, Seattle, Washington; National Cancer Institute, Pascale Foundation, Naples, Italy; Division of Thoracic Surgery, Memorial Hospital-University of Colorado Health, Colorado Springs, Colorado; Department of Surgery, Southern Illinois University, Springfield, Illinois; Division of Thoracic Surgery, NorthShore University Health System, Evanston, Illinois; Esophageal Center of Excellence, Virginia Mason Medical Center, Seattle, Washington; Division of Thoracic Surgery, Brigham and Women's Hospital/Dana-Farber Cancer Institute, Boston, Massachusetts; Department of Cardiothoracic Surgery, Stanford University, Stanford, California; Division of Cardiothoracic Surgery, Medical University of South Carolina, Charleston, South Carolina; Division of Thoracic Surgery, Massachusetts; and Division of Thoracic Surgery, University of Calgary, Foothills Medical Centre, Calgary, Alberta, Canada

Keck School of Medicine of USC

Blackmon et al. Ann Thor Surg 2016;101:1230-7

STS Checklist for Privileging – Any New Device

Verification of knowledge and skills assessment

- ABTS-eligible or ABTS-certified surgeon
- Documented completion of a course or didactic session
- For recent graduates of an accredited program, case logs and a program director letter attesting to competence

Team management

- Draft of implementation program complete
- Education plan for team members complete
- Crisis management plan complete

□ Institutional collaboration

• IRB and/or institutional innovative care/new technology committee approval

□ Monitoring of outcomes

- Participation in a continuous quality improvement committee and/or morbidity/mortality conference
- Participation in an auditable database (eg, National Surgical Quality Improvement Program, STS National Database, Michigan Society of Thoracic and Cardiovascular Surgeons Quality Collaborative) or registry or shared database that is accessible by the host institution
- Demonstration of ability to present accurate and detailed morbidity and mortality rates to administration upon request
- □ Patient-centered transparency
 - Provide appropriate consent forms for IRB and/or innovative committee approval
 - Provide the patient information on the risks and benefits of the new procedure, alternative treatments, general costs (ie, to the patient or payer, or both), and comparative effectiveness of the new technology vs existing treatment options
 - Provide the patient with information on the surgeons training and experience to date

Keck School of Medicine of USC

Blackmon et al. Ann Thor Surg 2016;101:1230-7

Academia Perspective

Keck School of Medicine of USC

IDEAL-D

Review Paper

OPEN

IDEAL-D Framework for Device Innovation

A Consensus Statement on the Preclinical Stage

Hani J. Marcus, PhD,*†⊠ Amy Bennett, BSc,‡ Aswin Chari, MRCS,§¶ Toni Day, PhD,|| Allison Hirst, MSc,** Archie Hughes-Hallett, PhD,†† Angelos Kolias, PhD,‡‡§§ Richard M. Kwasnicki, PhD,¶¶ Janet Martin, PhD,|||| Maroeska Rovers, PhD,*** Sarah E. Squire, BSc,††† and Peter McCulloch, PhD**

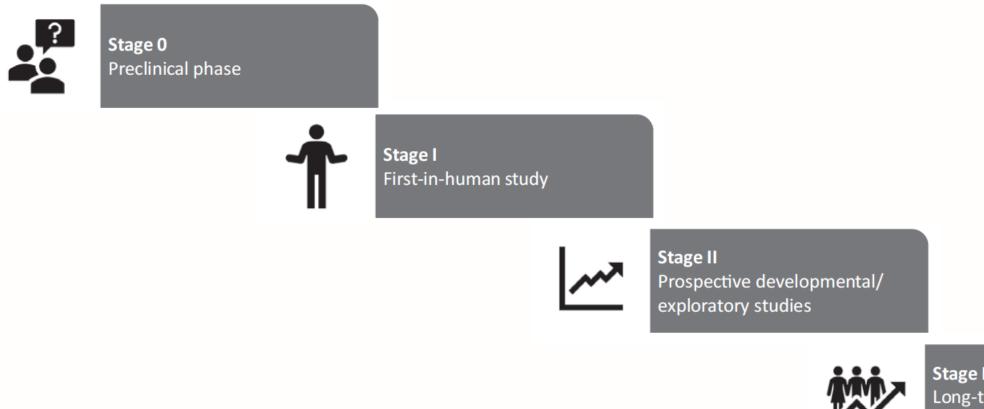
Objective: To extend the IDEAL framework for device innovation, IDEAL-D, to include the preclinical stage of development (stage 0).

Background: In previous work, the IDEAL collaboration has proposed frameworks for new surgical techniques and complex therapeutic technologies, the central tenet being that development and evaluation can and should proceed together in an ordered and logical manner that balances innovation and safety.

Methods: Following agreement at the IDEAL Collaboration Council, a multidisciplinary working group was formed comprising 12 representatives from healthcare, academia, industry, and a patient advocate. The group conducted a series of discussions following the principles used in the development of the original IDEAL framework. Importantly, IDEAL aims for maximal transparency, optimal validity in the evaluation of primary effects, and minimization of potential risk to patients or others. The proposals were subjected to further review and editing by members of the IDEAL Council before a final consensus version was adopted.

Results: In considering which studies are required before a first-in-human study, we have: (1) classified devices according to what they do and the risks they carry, (2) classified studies according to what they show about the device, and (3) made recommendations based on the principle that the more invasive and high risk a device is, the greater proof required of their safety and effectiveness before progression to clinical studies (stage 1).

Conclusions: The proposed recommendations for preclinical evaluation of medical devices represent a proportionate and pragmatic approach that balances the de-risking of first-in-human translational studies against the benefits of rapid translation of new devices into clinical practice.


Keywords: devices, first-in-human, IDEAL, innovation, preclinical, regulation

(Ann Surg 2022:275:73-79)

• <u>I</u>dea

- <u>D</u>evelopment
- Exploration
- <u>A</u>ssessment
- Long-term follow up
- Device innovation

IDEAL-D Stages of Development

Stage IV Long-term monitoring and registries

Keck School of Medicine of USC

Marcus HJ et al. Ann Surg 2022;275:73-79

Example

- Authors developed RAMIE technique at their hospital
- Outcomes of each sequential case
- Patient selection explained (including exclusion)
- Highlight changes to technique each time introduced

The IDEAL prospective development study format for reporting surgical innovations. An illustrative case study of robotic oesophagectomy

Ismael Diez del Val^a, Carlos Loureiro^a, Peter McCulloch^{b,*}

^a Esophago-gastric Surgery and Robotic Unit, Service of General and Digestive Surgery, Basurto University Hospital, Avenida, Montevideo, 18, 48013 Bilbao, ^b Nuffield Department of Surgical Science Level 6, John Radcliffe Hospital, Oxford OX3 9DU, UK

HIGHLIGHTS

Surgery

IDEAL.

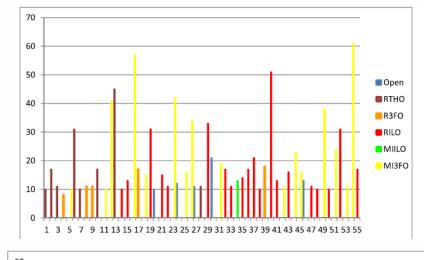
• This paper demonstrates the use of the IDEAL Prospective Development Study format for presenting early work on surgical procedures. • We show how transparency in reporting changes during development can allow others to benefit from the authors experience. • The findings are of special interest to upper GI surgeons interested in using a robotic approach for oesophageal resection.

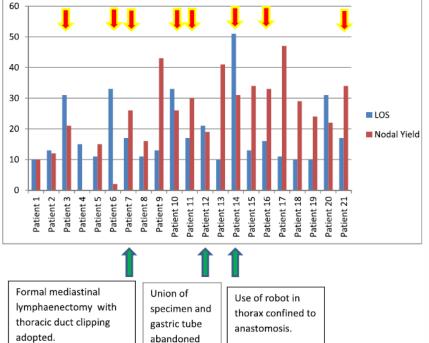
ARTICLEINFO	ABSTRACT
Article history:	Background: The early development of innovative surgical procedures is usually reported as retrospec-
Received 13 March 2015	tive case series, wasting opportunities to provide useful information and introducing bias. We present a
Accepted 15 April 2015	report of an innovative procedure in development, using the Prospective Development Study (PDS)
Available online 17 April 2015	format recommended by the IDEAL Collaboration.
<i>Keywords:</i>	Methods: We report the development of robotically assisted oesophagectomy by a two-surgeon team
Oesophagectomy	from the first robotic case onwards. Key outcomes (blood loss, robotic operating time, lymph node yield,
Robotic	length of stay and complications) are prospectively reported for each patient sequentially. Reasons for
Methodology	rejecting cases for robotic surgery are explained. All changes to technique or indication are highlighted,

ique or indication are highlighted. showing when they occurred and explaining why they were instituted. Results: The first robotic oesophagectomy was attempted in December 2009. Subsequently 55 oesophagectomies were undertaken, 34 using the robot and 21 without it. Seven deliberate changes in technique occurred during the series. Nodal yield increased markedly after adopting formal mediastinal node dissection and clipping of the thoracic duct. No obvious trends were noted in other outcomes. The robot facilitated Intra-thoracic anastomosis, but mediastinal node dissection showed no advantages due to loss of haptic sensation. Complication rates, R0 rates and nodal yield were considered acceptable. Discussion: Presenting the development experience in this way improved the clarity of transmission of the main learning points for other surgeons, eliminated bias from selective reporting and explained other types of selection bias. The IDEAL Prospective Development Study has clear advantages over standard case series format for presenting uncontrolled early study data from innovative procedures.

© 2015 IJS Publishing Group Limited. Published by Elsevier Ltd. All rights reserved.

Keck School of Medicine of USC


Diez del Val et al. Intl J Surg 2015;19:104-11


Details of individual cases.

No	LOS	Neoadj	Operation	Notes & complications	Node
1	10	CRXT	RTHO	Laparoscopic exploration only - inoperable (M1): Transhiatal	
		(1) I I		gastric herniation, repaired laparoscopically	
2	17 11	CRXT CRXT	RTHO RTHO	None None	6 12
3 4	8	No	R3FO	None Diagnostic thoracoscopy only — inoperable (T4b): preoperative	12
4	0	NU	KSFO	diagnosis leiomyoma. None	
5	10	CRXT	MIBFO	Cervical anastomotic leak type 2*	9
6	31	CRXT	RTHO	Fistula from gastric tube, repaired at 2nd op.	9
7	10	CRXT	RTHO	Elective conversion to laparotomy	19
8	11	CRXT	R3FO	Cervical anastomotic leak type 1	9
9	11	CRXT	R3FO	None	14
10	17	CRXT	RTHO	Cervical anastomotic leak type 1	10
11	10	CRXT	MI3FO	Previous Nissen fundoplication. None	16
12	41	CRXT	MI3FO	Anastomotic leak type 4, progressing to gastrobronchial fistula	7
13	45	CRXT	RTHO	Anastomotic leak type 3 & gangrenous cholecystitis. Died	16
14	10	CRXT	RILO	None	10
15	13	CRXT	RILO	None	12
16	57	No	MI3FO	Second primary Ca in lung: Cardiopulmonary failure, impossible to extubate. Died	15
17	17	CRXT	R3FO	None	8
18	15	CRXT	MI3FO + Chole	Elective conversion to thoracotomy	17
19 20	31 10	No (cardio)	RILO OTHO (colon internecition)	Anastomotic leak type 3	21 9
20 21	10 15	CXT	OTHO (colon interposition) RILO	None On for Stengeing ulser None	9
21	15	No (benign) No	RILO	Op for Stenosing ulcer. None Conversion to thoracotomy (pleural adhesions)	15
22	42	CRXT	MIBFO	Forced conversion (haemorrhage) to thoracotomy. Chylothorax	15
24	12	No (cardio)	RTHO	None	18
25	16	No	MIBFO	Cervical anastomotic leak type 1	25
26	34	CXRT	MIBFO	Multi-organ failure, died	19
27	11	No (benign)	O3FO	None (previous lvor-Lewis 6 years before)	
28	11	CXRT	RTHO (OTHO 2nd time)	Tako-tsubo cardiac failure, recovered	18
29	33	CXRT	RILO	M1 disease: Chylothorax - died from CVA	2
30	21	No (benign)	O3FO (L thoracot)	Oesophagectomy to treat oesophago-jejunal leak after total	
				gastrectomy. None	
31	19	No	MI3FO	None	26
32	17	CXRT	RILO	Anastomotic leak type 3, endoprosthesis	26
33	11	CXRT	RILO	CXRT was 1 year previously. None	16
34	13	CXRT	MIILO	None	43
35	14	CXT	RILO	None	26
36	17	CXRT	RILO	Effusion, Pig-tail pleural drain	30
37	21	CXRT	RILO	Conversion to thoracotomy (pleural adhesions)	19
			B # 0	Effusion, Pig-tail pleural drain	
38	10	CXT	RILO	None	41
39 40	18 51	CXRT	R3FO RILO	Anastomotic leak type 2 Anastomotic leak type 3/ARDS. Died	31 38
40	13	CXRT	RILO	None	38
41	11	CXRT	MI3FO-coloplasty	None	29
42	16	CXRT	RILO	Pig-tail pleural drain	33
44	23	CXRT	MI3FO + chole	Pleural effusion: tube	24
45	16	CXRT	MIBFO	Anastomotic leak type 4. Reoperation. Died	28
46	13	No (age)	OTHO	None	49
47	11	No (age)	RILO	None	47
48	10	CXRT	RILO	None	29
49	38	No (uT1N0)	MIBFO	Anastomotic leak type 4. Reoperation	41
50	10	No (HGD)	RILO	None	24
51	24	CXRT	MI3FO	None	55
52	31	CXRT	RILO	None	22
53	11	CXRT	MI3FO + chole	None	29
54	61	CXRT	MI3FO	Chylothorax. Reoperated	31
55	17	CXRT	RILO	Pig-tail pleural drain	34

1. No complications 30/55 = 54.5%.

2. Anastomotic leaks: 12/5 = 21.8% classified according to Larburu et al. [20]. [3 Type I (radiological); 2 Type II(cervical); 4 Type III (thoracic); 3 Type IV (ischemia)] 3. Median length of stay: 15 days (IQ range: 11–23.5).

Keck School of Medicine of USC

Diez del Val et al. Intl J Surg 2015;19:104-11

Patient Perspective

Keck School of Medicine of USC

Informed Consent

- Patient wants robotic mitral repair
- Surgeon will do it but has only done 1 case
- How much to disclose?

First in line for robotic surgery: Would you want to know? (O) Check for updates

Y. Joseph Woo, MD,^a John R. Handy, Jr, MD,^b and Robert M. Sade, MD^c

- From the ^aDepartment of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, Calif; ^bProvidence Cancer Institute, Portland, Ore; and ^cDepartment of Surgery and Institute of Human Values in Health Care, Medical University of South Carolina, Charleston, SC.
- Read at the 44th Annual Meeting of the Western Thoracic Surgical Association, Goleta, California, June 27-30, 2018.
- Received for publication Nov 2, 2018; accepted for publication Nov 10, 2018; available ahead of print Dec 18, 2018.
- Address for reprints: Robert M. Sade, MD, Medical University of South Carolina, 30 Courtenay Drive, Suite 277, MSC 295, Charleston, SC 29425-2270 (E-mail: sader@musc.edu).

J Thorac Cardiovasc Surg 2019;157:1934-40 0022-5223/\$36.00

Copyright © 2018 by The American Association for Thoracic Surgery https://doi.org/10.1016/j.jtcvs.2018.11.025

The safety, effectiveness, and durability of robotic mitral valve repair have been well documented and, despite increased operating room time, have been found to have some advantages over other repair techniques.¹ The adoption of robotic mitral valve repair has been widespread in part because of patients' preferences and demands, and in part because of marketing pressures in a competitive health care environment.² As robotic approaches are more widely adopted in response to these factors, the number of surgeons who are relatively inexperienced in robotic techniques increases.

This situation leads to an ethical problem when a patient wants robotic surgery and the surgeon is able to do it but has performed only a limited number of such operations: How much detail about the surgeon's experience must be disclosed during the informed consent process? This question was explored in the form of a debate at the 44th Annual Meeting of the Western Thoracic Surgical Association. The debate was focused on the hypothetical case of a nervous patient.

Robotic cardiac surgery requires a large integrated team in the operating room.

Central Message

A controversial aspect of informed consent is the question of whether a surgeon's personal experience should be disclosed to patients routinely.

See Commentary on page 1941.

second, once acquired, one of their group would be trained to perform robotic-assisted minimally invasive mitral valve replacement and repair (MIMVR). They designated the youngest surgeon of the group, Dr Hal Asimov, who had been with them for 5 years. He was chosen because he performed both cardiac and thoracic procedures and was generally seen as the best video-assisted thoracoscopic surgeon in the group. He had also been an All-American basketball player in college, had been a champion videogamer throughout his school years, and was an accom-

Keck School of Medicine of USC

Woo et al. JTCVS 2019;157:1934-40

Society or Payer Perspective

Keck School of Medicine of USC

Do all surgeons have the right to adopt new technology?

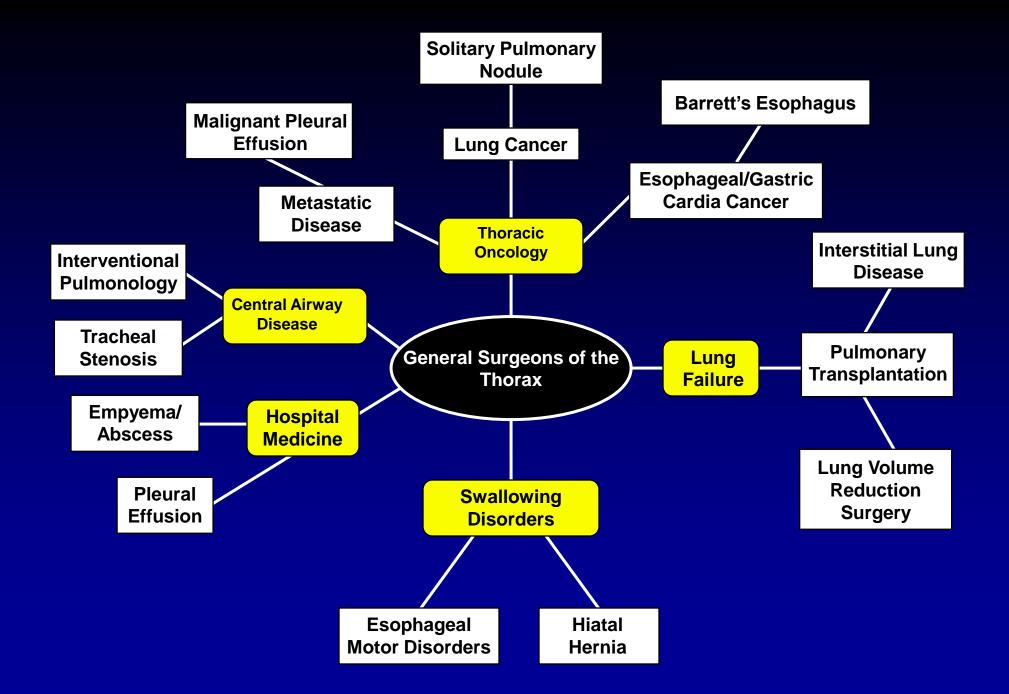
Considerations:

- Wide dissemination vs. centers of excellence
- Relationship between volume and outcomes
- Cost effectiveness and efficiency
- How much adoption has already occurred? How much evidence has accumulated?

Conclusion

- Use of a novel medical device is a complex interplay of industry, surgeons, hospitals, governing bodies, and societies
- A company can market, sell, train, and support use of the device as long as procedure is on-label and used according to the IFU
- A surgeon can deviate from the labeling and IFU but the company cannot be involved outside of an IDE
- The responsibility of the hospital is significant and leads to variability
- IDEAL-D is the recommend framework by which new device outcomes should be measured and reported

Keck School of Medicine of USC

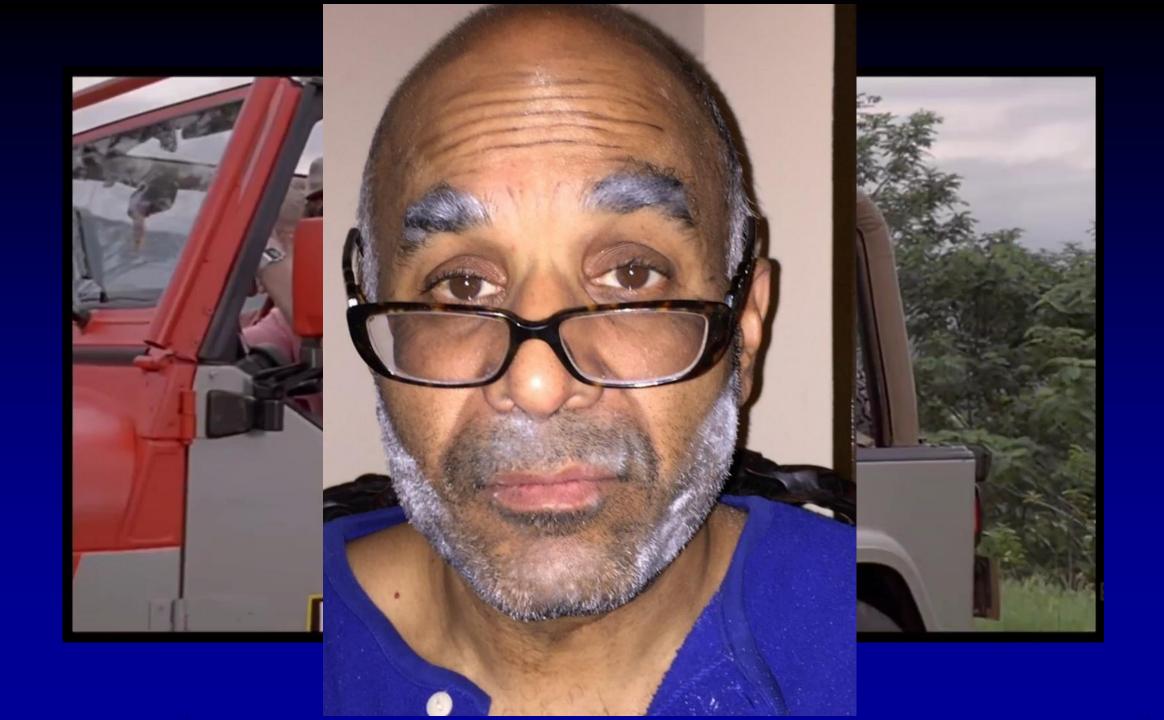


Teaching An Old Dog A New Trick?

Sudish Murthy, MD, PhD, FACS, FCCP Daniel and Karen Lee Endowed Chair in Thoracic Surgery Section Head, General Thoracic Surgery Professor of Surgery, CCLCM of Case Western Reserve University Thoracic & Cardiovascular Surgery Cleveland Clinic, Ohio <u>MURTHYS1@CCF.ORG</u>

No relevant disclosures

GTSC 2023


• Famous Emeritus

• Famous Emeritus

Societal Leader with Keen Insight

- Famous Emeritus
- Societal Leader with Keen Insight

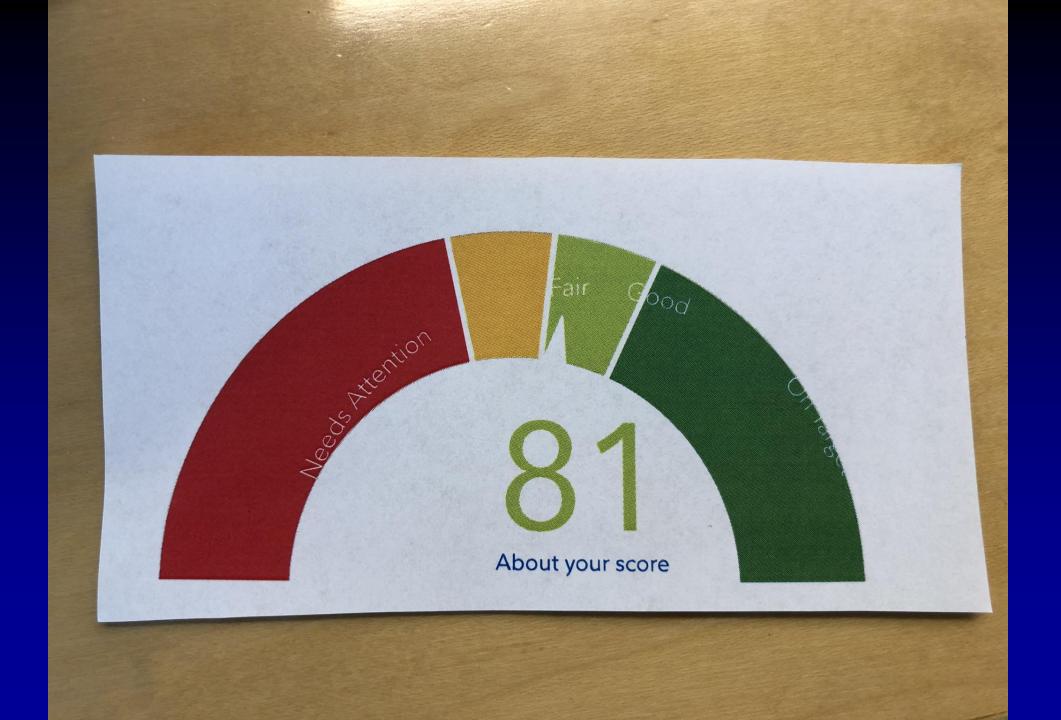
- Famous Emeritus
- Societal Leader with Keen Insight

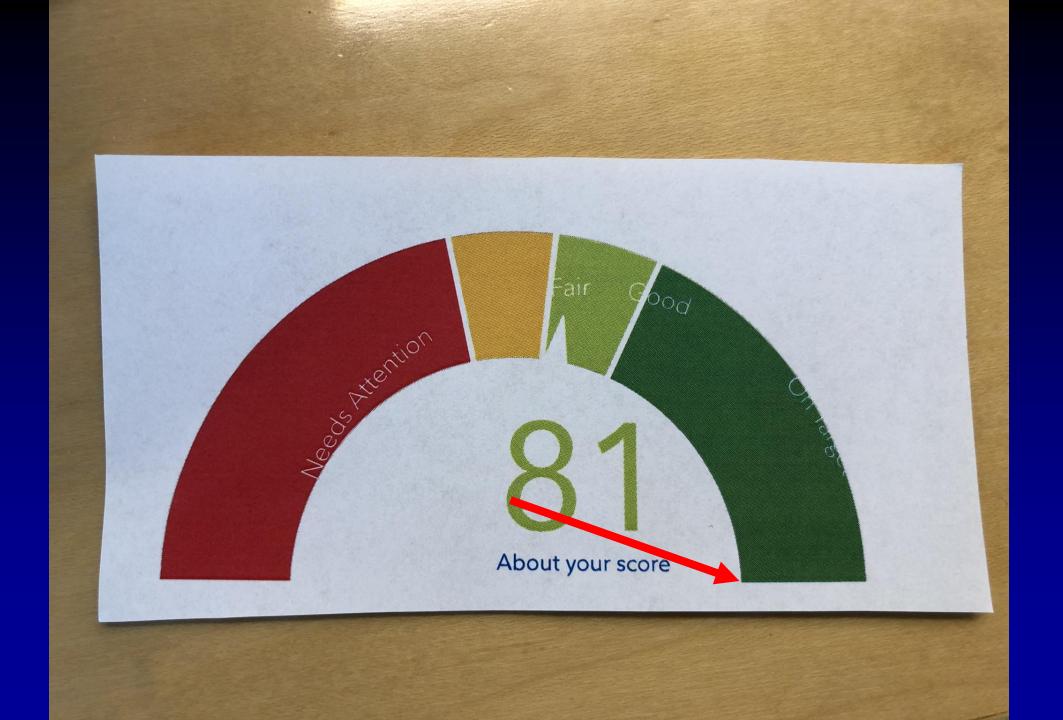
 That Dinosaur Who hasn't gotten a PLAN B after Stoking the Boilers for quite some time

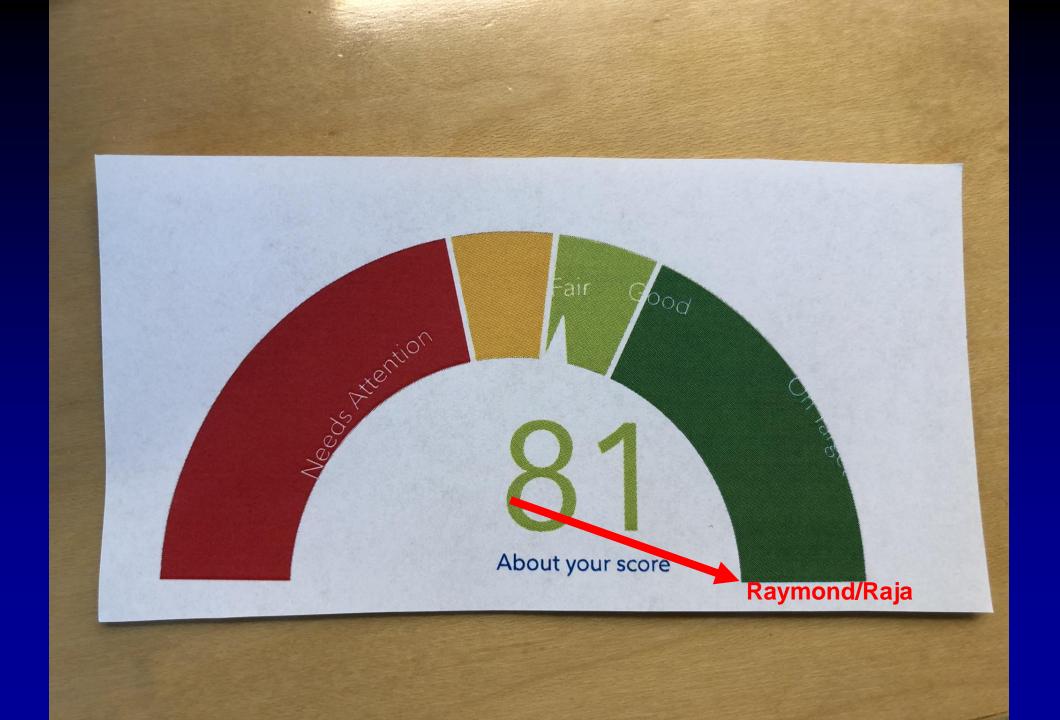
What's NOT New?

Murthy,	, Sud	ish - (Central	▼ Filter by Status ▼ Total: 2	22			C Preview
	Pr	En	Status	Status Details	Time Proc/Visit Type	Notes	Department	Sched Status
		Yes	Signed	Checked out: 11:12 AM	8:20 AM Provider Specialty Phone Call	phone Lung nodule	THORMN	Completed
		Yes	Signed	Checked out: 11:12 AM	8:40 AM Provider Specialty Phone Call	phone Malignant neoplasm of breast in female, estrogen receptor positive, unspecified laterality, u	THORMN	Completed
	Ľ1	Yes	Signed	Checked out: 9:08 AM	9:00 AM Video Spec Est	TRACHEAL STENOSIS/GERD EST VIRTUAL F/U TO DISCUSS TESTS RESULTS PER REBEC	THORMN	Completed
		Yes	Signed	Checked out: 9:26 AM	9:20 AM Est Patient	FOLLOW UP	THORMN	Completed
		Yes	Signed	Checked out: 11:08 AM	9:40 AM Pre Op	-or- SM 3/6/23 Robotic Assisted Esophagectomy	THORMN	Completed
		Yes	Signed	Checked out: 10:19 AM	10:00 AM Con Patient	Mesothelioma coord/w Oncology per phone enc	THORMN	Completed
		Yes	Signed	Checked out: 1:02 PM	10:20 AM Pre Op	-or- SM 3/3/23 POP NoteNo covid needed per Rebecca	THORMN	Completed
		Yes	Signed	Checked out: 11:08 AM	11:00 AM Con Patient	Venous lymphatic malformation CONSULT W/PFTS COORD W/CARDIO PER REBECCA'S TEL	THORMN	Completed
		No	Not Seen	No Show	11:20 AM Con Patient	Esophageal Cancer New Consult - No Testing prior per Rebecca tele	THORMN	No Show
		Yes	Signed	Checked out: 11:57 AM	11:40 AM Con Patient	Hiatal Hernia Consult per Rebecca	THORMN	Completed
		Yes	Signed	Checked out: 12:12 PM	12:40 PM Con Patient	Lung Nodule and COPD CONSULT W/ DOBUT ECHO, CPET PER REBECCA'S TELE 1ST AVAI	THORMN	Completed
		Yes	Signed	Checked out: 1:46 PM	1:00 PM Con Patient	GERD post lung txp CONSULT NO TESTS PER REBECCA'S TELE R/S FROM 1/12/23 & 1/19/2	THORMN	Completed
		Yes	Signed	Checked out: 12:14 PM	1:40 PM Est Patient	Lung Nodules follow-up + cct	THORMN	Completed
		Yes	Signed	Checked out: 1:24 PM	2:00 PM Con Patient	Hiatal Hernia Consult w/pfts per Rebecca	THORMN	Completed
		Yes	Signed	Checked out: 2:49 PM	2:20 PM Con Patient	GERD CONSULT W/PFTS PER REBECCA'S TELE R/S FROM 1/26/23 & 2/9/23 PER PT'S REQ	THORMN	Completed
		Yes	Signed	Checked out: 2:02 PM	2:40 PM Con Patient	$Gastroesophageal\ reflux\ disease\ without\ esophagitis\ Achalasia\ and\ cardiospasm\ New\ Consult\ w/$	THORMN	Completed
		Yes	Signed	Checked out: 3:28 PM	3:00 PM Con Patient	Esophageal Dysplasia per phone enc Note triaging Pet Scan	THORMN	Completed
		Yes	Signed	Checked out: 3:59 PM	3:20 PM Pre Op	-or- SM 3/6/23 Robotic Left Lung Resection, segment vs lobe	THORMN	Completed
		Yes	Signed	Checked out: 4:14 PM	3:40 PM Con Patient	Lung nodule [R91.1]	THORMN	Completed
		Yes	Signed	Checked out: 4:28 PM	4:00 PM Con Patient	Hiatal hernia CONSULT W/TBE, PFTS PER SCOTT'S TELE	THORMN	Completed
		Yes	Signed	Checked out: 11:57 AM	4:20 PM Pre Op	Robotic Assisted Esophagectomy OR 3/3/2023	THORMN	Completed
		Yes	Signed	Checked out: 5:45 PM	4:40 PM Con Patient	Lung Mass Metastatic Rectal cancer CONSULT W/PFTS PER REBECCA'S TELE PFTS DONE 2/	THORMN	Completed

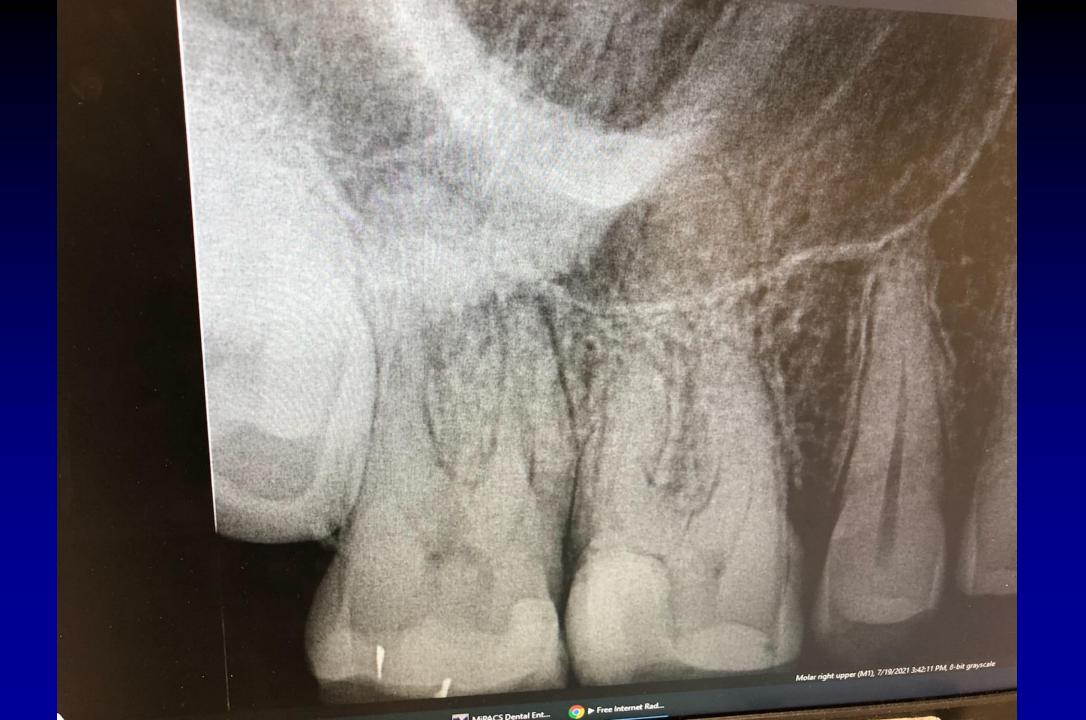
Murth	ny, S	Sudish -	Central	Filter by Status	Total: 1	14			9
		Pr En	Status	Status Details	Time	Proc/Visit Type	Notes	Department	Sched Status
		No	Scheduled		9:00 AM	EGD DIAGNOSTIC [GI9]		HLDHC	Scheduled
		No	Scheduled		9:30 AM	EGD DIAGNOSTIC [GI9]		HLDHC	Scheduled
		No	Scheduled		10:00 AM	EGD DIAGNOSTIC [GI9]		HLDHC	Scheduled
		No	Scheduled		10:30 AM	EGD DIAGNOSTIC [GI9]	Malignant neoplasm of lower third of esophagus (HCC) [C15.5]	HLDHC	Scheduled
		No	Scheduled		11:00 AM	Est Patient	Lung nodule Follow up after testing Add on per Paula	THORHL	Scheduled
		No	Scheduled		11:20 AM	Con Patient	Malignant neoplasm of mediastinum (HCC) [C38.3] Mediastinal mass [J98.59] New Con w/ Labs,	THORHL	Scheduled
		No	Scheduled		11:40 AM	Est Patient	Follow up	THORHL	Scheduled
		No	Scheduled		12:00 PM	Con Patient	Gastroesophageal reflux Barium completed 2/28	THORHL	Scheduled
		No	Scheduled		12:20 PM	Con Patient	Neoplasm of lung Personal history of DVT (deep vein thrombosis) CONSULT W/PFTS (PENDING	THORHL	Scheduled
		No	Scheduled		12:40 PM	Provider Specialty Phone Call	Phone call Lung nodule	THORHL	Scheduled
		No	Scheduled		1:00 PM	Con Patient	Esophageal Mass H&P need for EUS per phone enc	THORHL	Scheduled
		No	Scheduled		1:20 PM	Provider Specialty Phone Call	Phone visit Review imaging	THORHL	Scheduled
		No	Scheduled		1:30 PM	Provider Specialty Phone Call	phone visit Lung nodule OK'D PER REBECCA	THORHL	Scheduled
		⊡ No	Scheduled		1:40 PM	Video Spec Est	Diaphragmatic hernia without obstruction and without gangrene Follow up Testing done locally	THORHL	Scheduled

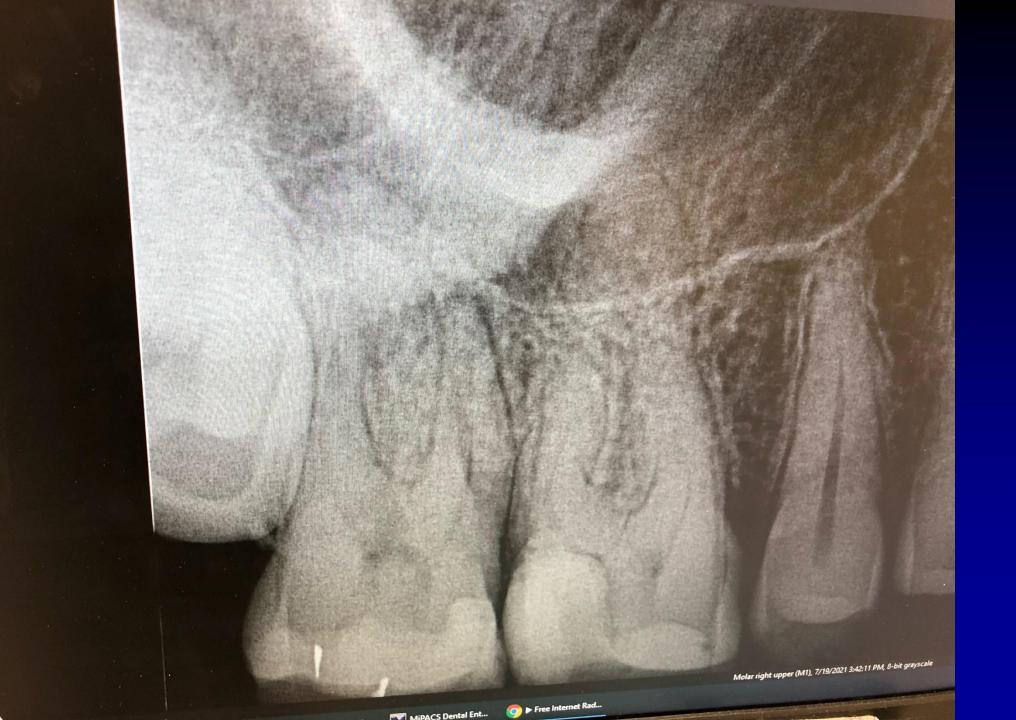

Murthy,	Sudish -	Central	Filter by Status	Total:	24			
	Pr En	Status	Status Det	Time	Proc/Visit Type	Notes	Department	Sched Status
	No	Scheduled	OR69	12:00 AM	ESOPHAGECTOMY W/ PHARYNGOGASTROSTOMY		СТН	Scheduled
	No	Scheduled		8:20 AM	Con Patient	Encounter for other preprocedural examination [Z01.818	THORMN	Scheduled
	No	Scheduled		9:00 AM	Con Patient	Reflux Consult no test Add per Rebecca's tele GPS Rep	THORMN	Scheduled
	No	Scheduled		9:40 AM	Con Patient	Lung nodule Consult per Rebecca	THORMN	Scheduled
	No	Scheduled		10:00 AM	Con Patient	Lung nodules CONSULT/PRE OP W/PFTS ADD PER R	THORMN	Scheduled
	No	Scheduled		10:20 AM	Est Patient	Post-thoracotomy pain Follow up	THORMN	Scheduled
	No	Scheduled		10:40 AM	Con Patient	Mucor post COVID mucormycosis Consult per Rebecca	THORMN	Scheduled
	No	Scheduled		11:00 AM	Pre Op	robotic assisted esophagectomy or 3/22/2023	THORMN	Scheduled
	No	Scheduled		11:20 AM	Con Patient	Achalasia and cardiospasm [K22.0] New Con w/ PFTs p_{\cdots}	THORMN	Scheduled
	No	Scheduled		11:40 AM	Con Patient	Airway malacia Consult per Rebecca	THORMN	Scheduled
	No	Scheduled		12:00 PM	Con Patient	Lung Nodule per phone enc date requested	THORMN	Scheduled
	No	Scheduled		12:20 PM	Con Patient	Encounter for other preprocedural examination Broncho	THORMN	Scheduled
	No	Scheduled		12:40 PM	Con Patient	Malignant neoplasm of esophagus, unspecified location	THORMN	Scheduled
	No	Scheduled		1:00 PM	Con Patient	Hiatal Hernia, GERD	THORMN	Scheduled
	No	Scheduled		1:20 PM	Pre Op	robotic assisted resection of ectopic parathyroid	THORMN	Scheduled
	No	Scheduled		1:20 PM	Est Patient	Lung Nodule Note triaging pet scan date requested	THORMN	Scheduled
	No	Scheduled		1:30 PM	Pre Op	robotic assisted right lung resection or 3/20/2023	THORMN	Scheduled
	No	Scheduled		1:40 PM	Con Patient	LVRS per Rebecca's phone enc date requested	THORMN	Scheduled
	No	Scheduled		2:00 PM	Pre Op	egd in the OR OR 3/17/2023	THORMN	Scheduled
	No	Scheduled		2:20 PM	Con Patient	Mass, chest [R22.2]	THORMN	Scheduled
	No	Scheduled		2:40 PM	Est Patient	Post induction follow-up after testing. Notetriaging echo	THORMN	Scheduled
	No	Scheduled		3:00 PM	Pre Op	Robotic Assisted Esophagectomy OR 3/21/2023	THORMN	Scheduled
	No	Scheduled		3:20 PM	Con Patient	Multiple lung nodules per phone enc	THORMN	Scheduled
	No	Scheduled		3:40 PM	Con Patient	Mediastinal mass CONSULT W/PFTS PER REBECCA'	THORMN	Scheduled

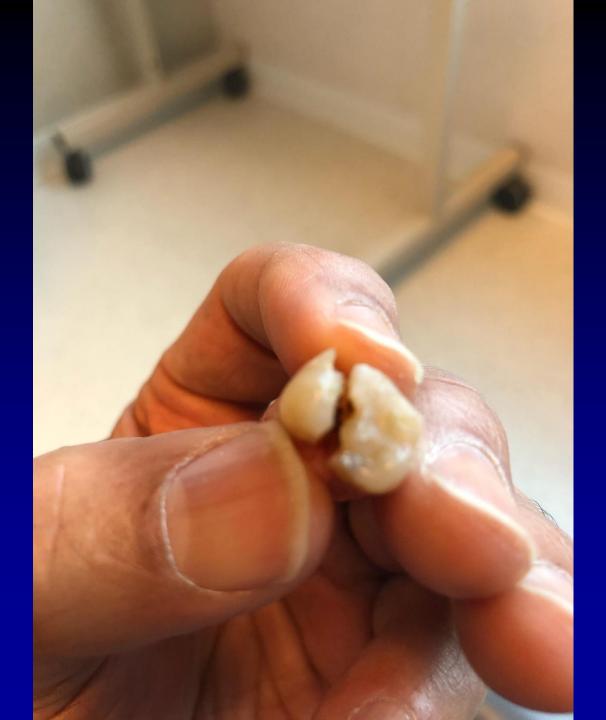

Murthy,	Sudish - Ce	entral	Filter by Status	Total: 26			
	Pr En S	Status	Status Det	Time Proc/Visit Type	Notes	Department	Sched Status
	No S	Scheduled	OR69 12	2:00 AM ESOPHAGECTOMY W/ PHARYNGOGASTROSTOMY		СТН	cheduled
	No S	Scheduled	8	8:20 AM Con Patient	Encounter for other preprocedural examination [Z01.818	THORMN	Scheduled
	No S	Scheduled	ç	9:00 AM Con Patient	Reflux Consult no test Add per Rebecca's tele GPS Rep	THORMN	Scheduled
	No S	Scheduled	ç	9:40 AM Con Patient	Lung nodule Consult per Rebecca	THORMN	Scheduled
	No S	Scheduled	10	0:00 AM Con Patient	Lung nodules CONSULT/PRE OP W/PFTS ADD PER R	THORMN	Scheduled
	No S	Scheduled	10	0:20 AM Est Patient	Post-thoracotomy pain Follow up	THORMN	Scheduled
	No S	Scheduled	10	0:40 AM Con Patient	Mucor post COVID mucormycosis Consult per Rebecca	THORMN	Scheduled
	No S	Scheduled	11	1:00 AM Pre Op	robotic assisted esophagectomy or 3/22/2023	THORMN	Scheduled
	No S	Scheduled	11	1:20 AM Con Patient	Achalasia and cardiospasm [K22.0] New Con w/ PFTs p	THORMN	Scheduled
	No S	Scheduled	11	1:40 AM Con Patient	Airway malacia Consult per Rebecca	THORMN	Scheduled
	No S	Scheduled	12	2:00 PM Con Patient	Lung Nodule per phone enc date requested	THORMN	Scheduled
	No S	Scheduled	12	2:20 PM Con Patient	Encounter for other preprocedural examination Broncho	THORMN	Scheduled
	No S	Scheduled	12	2:40 PM Con Patient	Malignant neoplasm of esophagus, unspecified location	THORMN	Scheduled
	No S	Scheduled	1	1:00 PM Con Patient	Hiatal Hernia, GERD	THORMN	Scheduled
	No S	Scheduled	1	1:20 PM Pre Op	robotic assisted resection of ectopic parathyroid	THORMN	Scheduled
	No S	Scheduled	1	1:20 PM Est Patient	Lung Nodule Note triaging pet scan date requested	THORMN	Scheduled
	No S	Scheduled	1	1:30 PM Pre Op	robotic assisted right lung resection or 3/20/2023	THORMN	Scheduled
	No S	Scheduled	1	1:40 PM Con Patient	LVRS per Rebecca's phone enc date requested	THORMN	Scheduled
	No S	Scheduled	2	2:00 PM Pre Op	egd in the OR OR 3/17/2023	THORMN	Scheduled
	No S	Scheduled	2	2:20 PM Con Patient	Mass, chest [R22.2]	THORMN	Scheduled
	No S	Scheduled	2	2:40 PM Est Patient	Post induction follow-up after testing. Notetriaging echo	THORMN	Scheduled
	No S	Scheduled	3	3:00 PM Pre Op	Robotic Assisted Esophagectomy OR 3/21/2023	THORMN	Scheduled
	No S	Scheduled	3	3:20 PM Con Patient	Multiple lung nodules per phone enc	THORMN	Scheduled
	No S	Scheduled	3	3:40 PM Con Patient	Mediastinal mass CONSULT W/PFTS PER REBECCA'	THORMN	Scheduled
	No S	Scheduled	4	4:00 PM Con Patient	RUL lung cancer Consult per Scott	THORMN	Scheduled
	No S	Scheduled	4	4:20 PM Est Patient	CHRONIC AIRWAY OBSTRUCTION Emphysematous b	THORMN	Scheduled


As a Surgeon

- 500+ LTx
- 1500+ Anatomic Lung Rx
- 400+ Esophagectomy
- 100+ Tracheal Resections
- 50+ residents
- >10,000 operations with residents







The Ask

- What Have I learned Given All the Miles on my Tires
 - How have I adapted to changing conditions
 - What Worked?
 - What Failed?

The Ask

- What Have I learned Given All the Miles on my Tires
 - How have I adapted to changing conditions
 - What Worked
 - What Failed

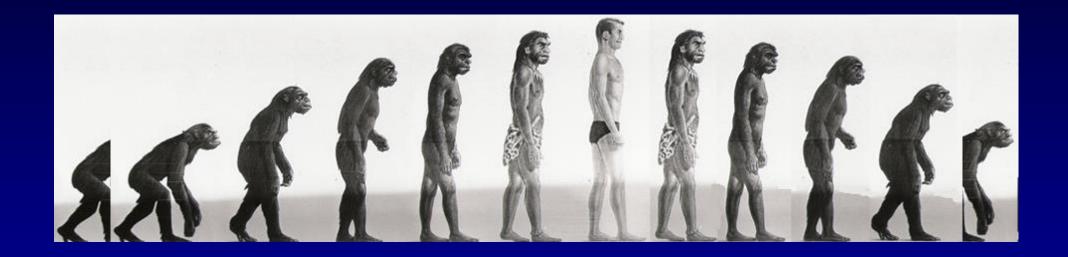
What has Changed that Forced me to Change?

What Has Changed?

- Disease Presentations?
 - More Stage I NSCLCa
 - More Resectable Stage IIIa
 - More Induction Esoph Ca
 - Increase in complication management
 - NO BARRETT's Operations

What Has Changed?

- Third Space Endoscopy
- Dissemination of Minimally invasive ops
- ImmunoTx
- Robotics
- Patient Reported outcomes
- Resident Education
- Work Force Inequity


What Has Changed?

- Third Space Endoscopy
- Dissemination of Minimally invasive ops
- ImmunoTx
- Robotics
- Patient Reported outcomes
- Resident Education
- Work Force Inequity

• JUST TO LIST A FEW!!!

How Do you Keep Current?

What Happens as You Age

www.uv.es/jgpausas

Health/Life

- Ran 10K races
 - Ran the Treadmill
 - Elliptical
 - Spin Bike
 - Rower
 - Recumbent Cycler

What Happens as You Age Mature as a Surgeon?

What Happens as You Age Mature as a Surgeon?

- Barring Unforeseen Circumstances
 - You generally Get Better
 - Knowledge of Surgical Anatomy
 - Knowledge of Diseases
 - Judgment

What Happens as You Age Mature as a Surgeon?

- Barring Unforeseen Circumstances
 - You generally Get Better
 - Knowledge of Surgical Anatomy
 - Knowledge of Diseases
 - Judgment

Vastly Improved Efficiency

Improved Efficiency

• Far Less Surgical Anxiety

Far Greater Intellectually Curiosity

• Far More Time to Learn New Things

Improved Efficiency

- Far Less Surgical Anxiety
- Far Greater Intellectually Curiosity
- Far More Time to Learn New Things

Job Satisfaction!!!

Reduced WORK-LIFE Imbalance

Reduced WORK-LIFE Imbalance

Reduced LIFE Imbalance

- Reduced LIFE Imbalance
- MENTORING
 - Faculty
 - Residents
 - Medical Students
- Innovation

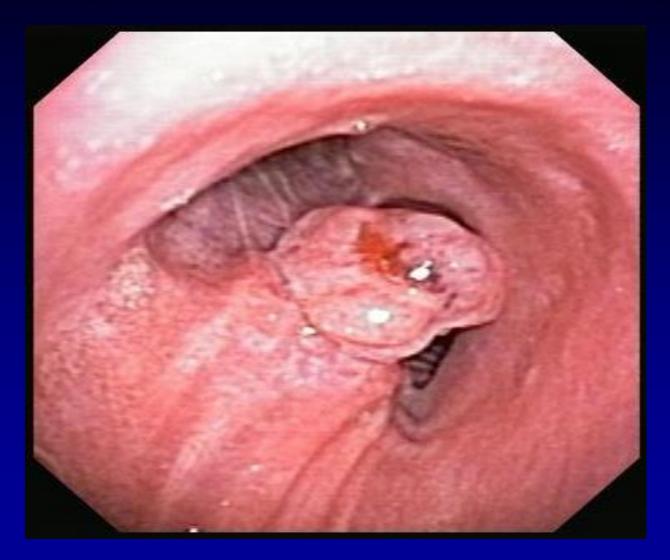
- Reduced LIFE Imbalance
- MENTORING/SPONSORING
 - Faculty
 - Residents
 - Medical Students
- Innovation

Introducing New Tech into the Practice

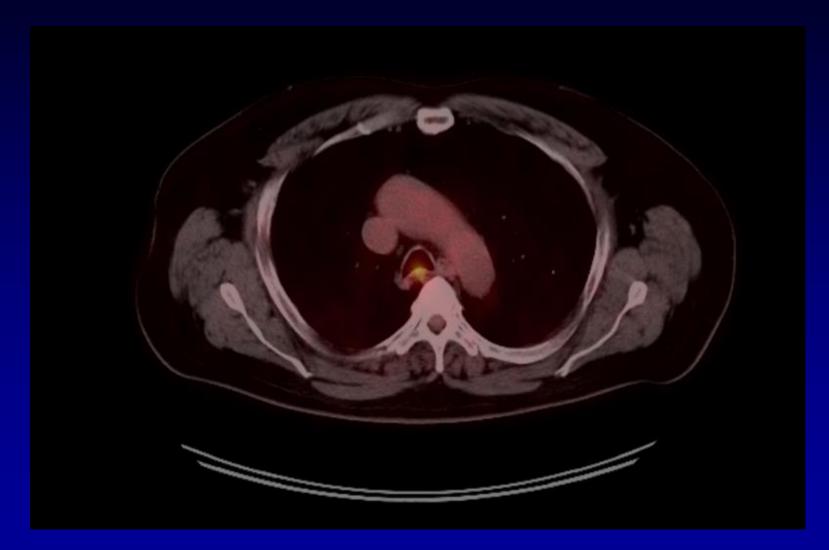
- Top Down Dissemination
- Most Senior Surgeons are Stewards
 - Robotics
 - Third Space Endoscopy
 - Cadaveric Bone/Titanium Reconstruction
 - V-V ECMO

At The End of the Day

- Improved Safety
- Improved Efficacy
- Improved Satisfaction
- PATIENTS FIRST



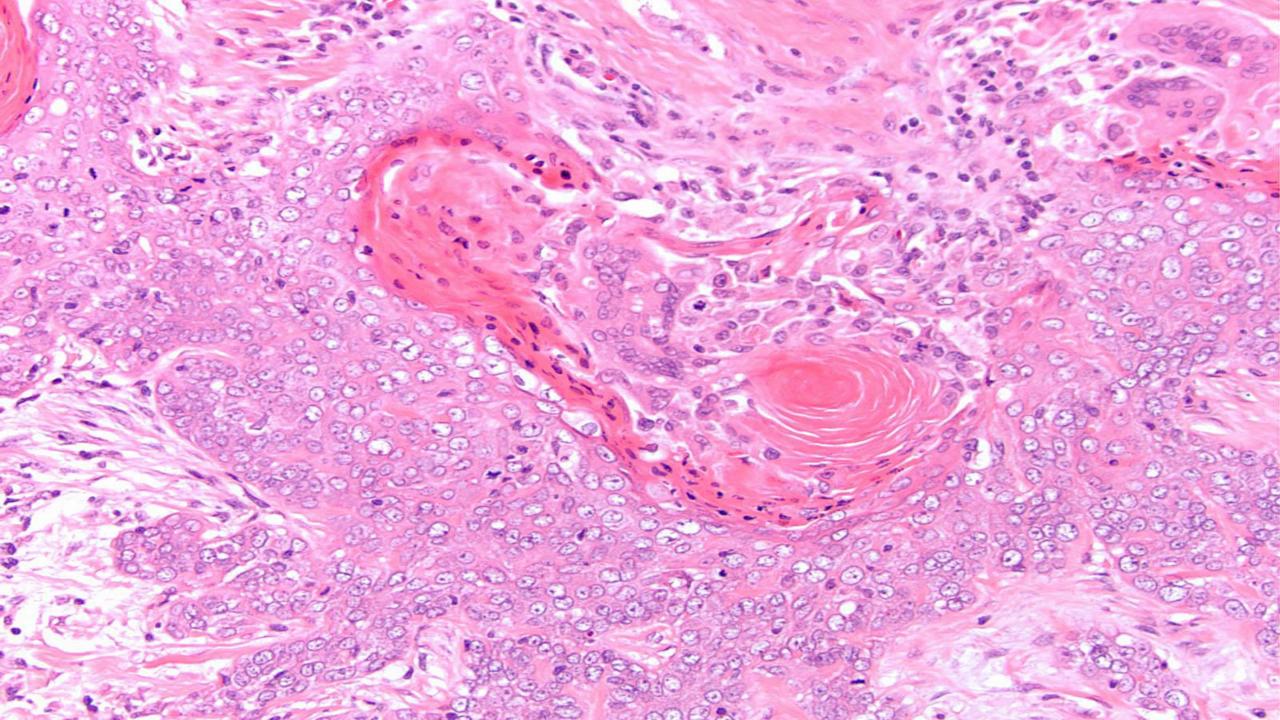
- 57-year-old man
- For 3 months
 - Dyspnea
 - Hoarseness
 - Intermittent hemoptysis
- Past medical history
 - 80 pack-years of tobacco use
 - Mild pulmonary obstruction


Preoperative Work-up

- Diagnostic bronchoscopy
- PET CT scan
- Therapeutic bronchoscopy

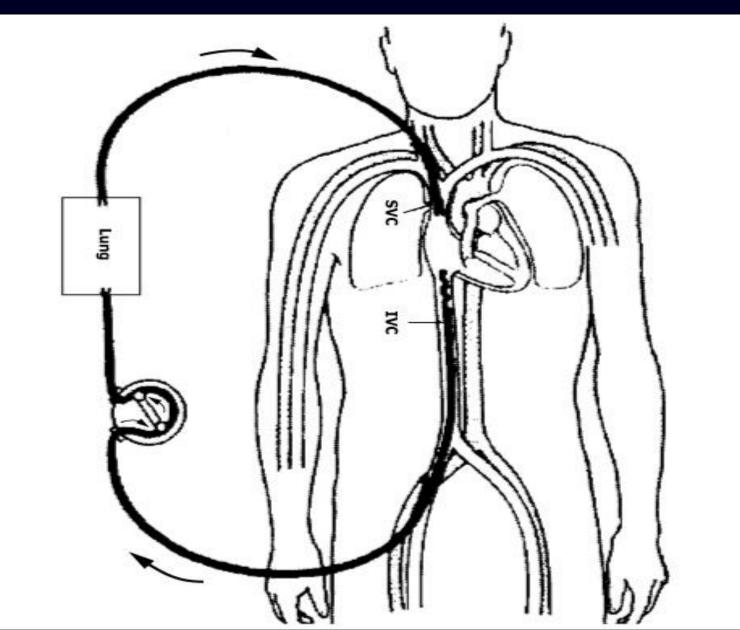

Diagnostic Bronchoscopy

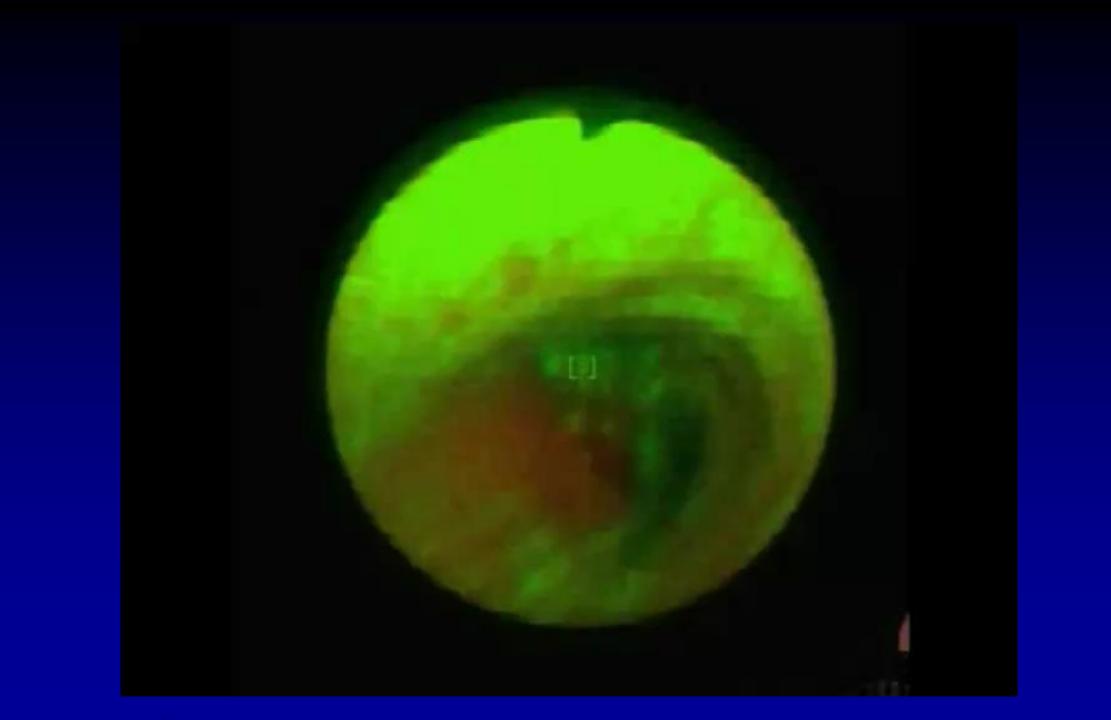
PET – CT



Therapeutic Bronchoscopy

Therapeutic Bronchoscopy





Operative Plan

- Autofluorescence bronchoscopy
- Mediastinoscopy
- Veno-venous ECMO (18Fr-in, 24Fr-out)
- Right thoracotomy approach

Veno-Venous ECMO Circuit

Postoperative Course

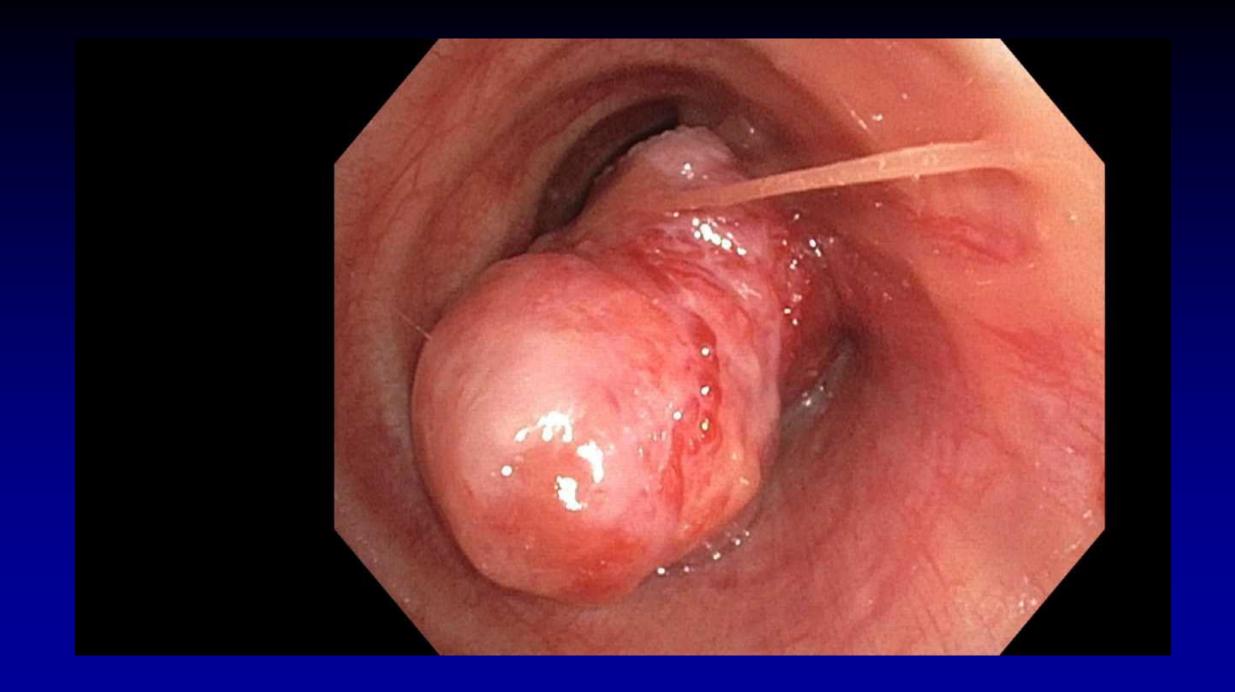
- 5-day hospital stay
- Negative margins

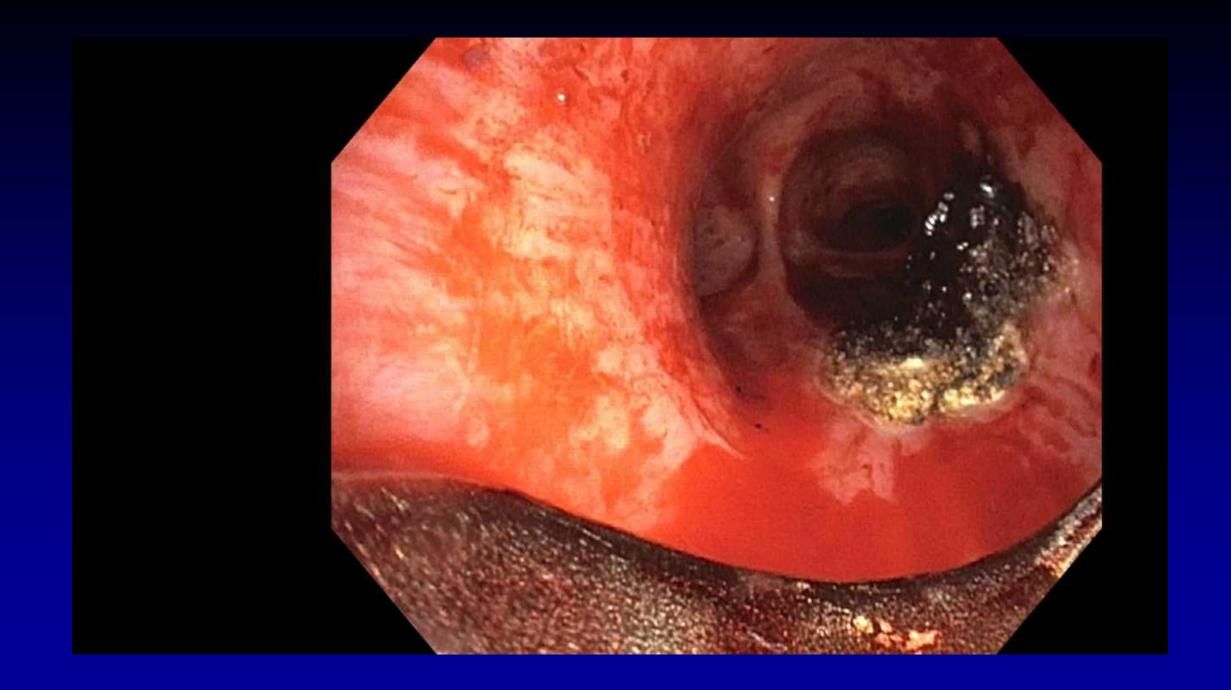
Starting Point (2012)

- ONE ROOM
- ONE DAY
- PER MONTH
- 6500+ cases into my practice

Mid-Point (2016)

- ONE ROOM
- ONE DAY
- PER WEEK
- 8200 Cases into my Practice
- Added another Junior Robotic Staff (of 4)


- ONE ROBOT (One Console)
- At ANY TIME*
- EVERY DAY*
- 10,000 Cases into my practice
- THREE EXPERIENCED ROBOTIC SURGEONS (of 7)



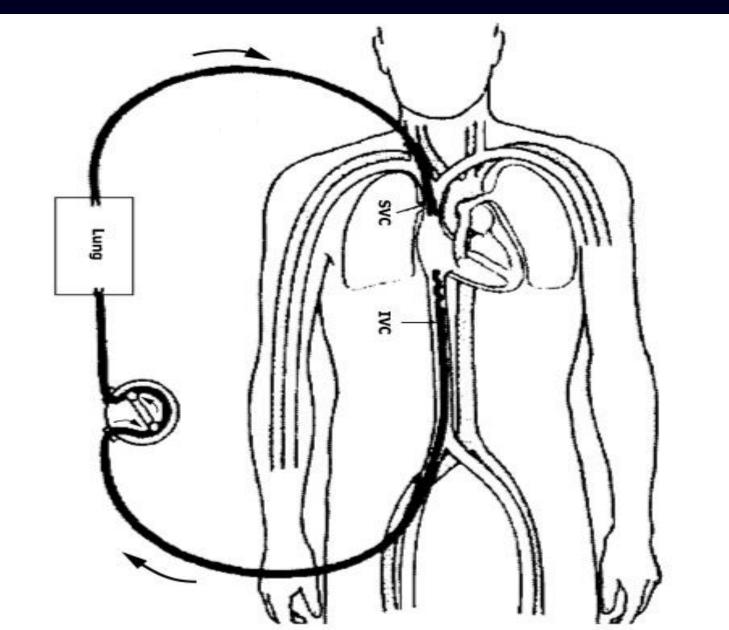
- 28 year-old man
- For 3 months
 - Dyspnea
 - Intermittent hemoptysis
- Past medical history
 - NOTHING

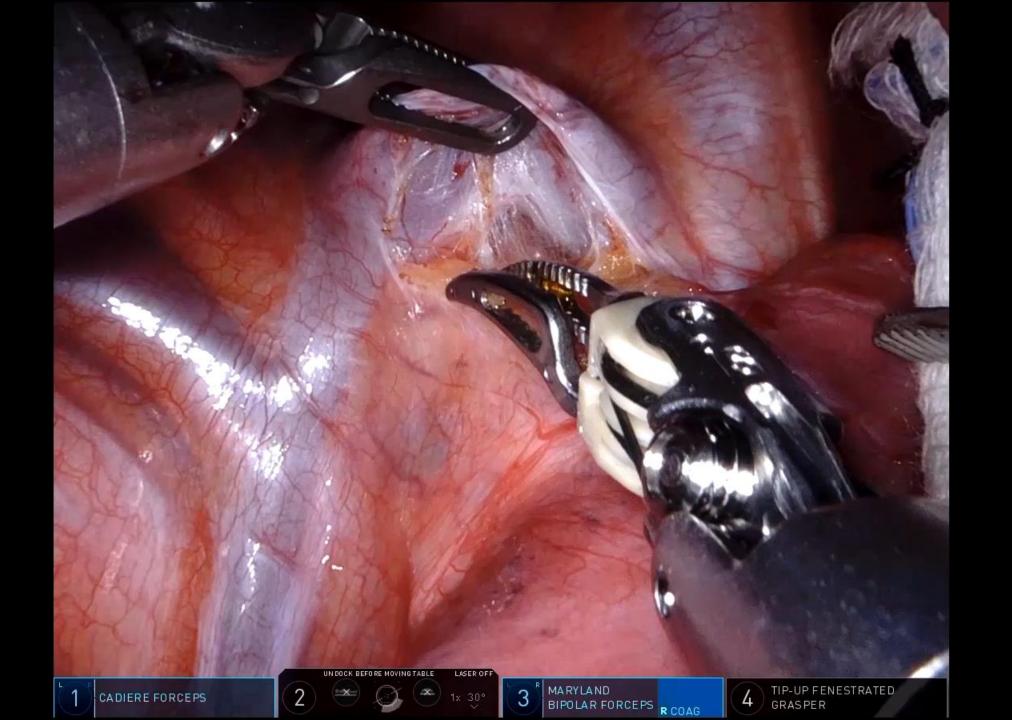
Preoperative Work-up

- Diagnostic bronchoscopy
- CCT scan
- Therapeutic bronchoscopy

- Mucoepidermoid Tumor (Low Grade)
- Completely FIT Young Man

Operative Plan

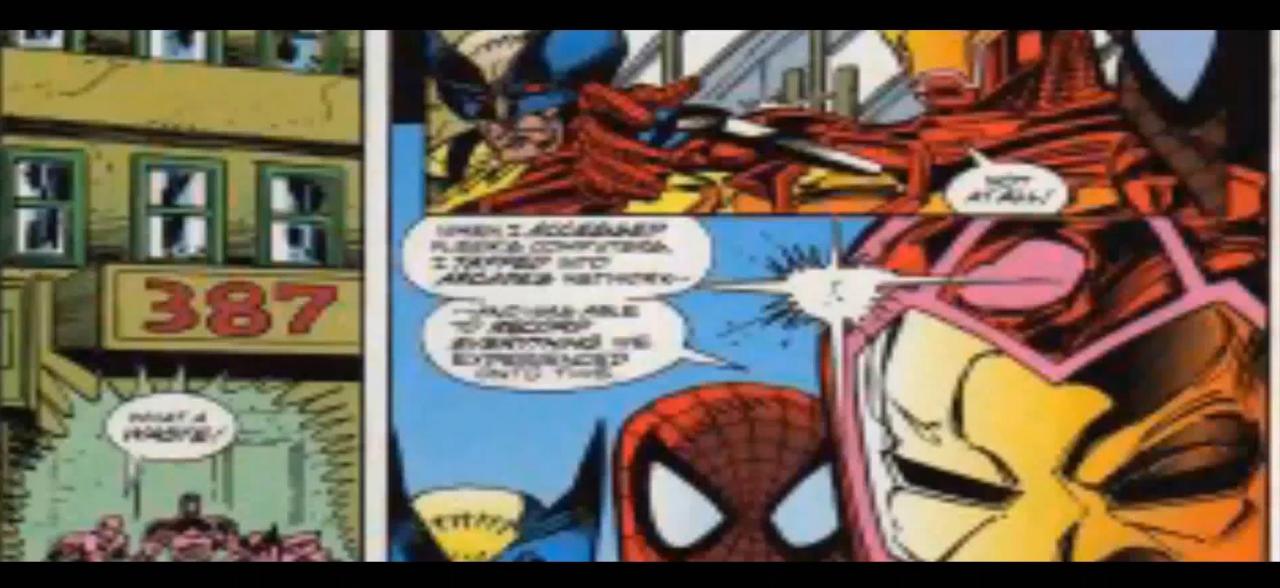

- Flexible Bronchoscopy
- Mediastinoscopy
- Veno-venous ECMO
 - Right IJ (18 Fr In-flow)
 - Right Femoral Vein (24 Fr Out-Flow)


Operative Plan

- Flexible Bronchoscopy
- Mediastinoscopy
- Veno-venous ECMO
 - Right IJ (18 Fr In-flow)
 - Right Femoral Vein 24 Fr Out-Flow)

Right Robotic Distal Tracheal Resection/Reconstruction?

Veno-Venous ECMO Circuit


Postoperative Course

- Unremarkable Course.
 - ECMO decannulated in the OR, Patient Extubated
 - Overnight ICU stay
- Negative margins on FINAL PATH
 - LNs at Stations 7, 8, 4R, 10R All -ve
- 3-day hospital stay
- Returned to Work in 4 weeks

If you Like what you are doing...

Change is Easy

Difficulties

- More Difficult to Graduate newer Faculty into the TRULY COMFORTABLE/CONFIDENT Surgeon Status
 - Can't put on call every night and less interest in LTx
 - This mode of post-grad educations is NOT commensurate with Optimal Life Balance
 - Case Immersion is thus at a retarded pace
 - Harder To Get the Reps in now

Difficulties

- More Difficult to Graduate newer Faculty into the TRULY COMFORTABLE/CONFIDENT Surgeon Status
 - Can't put on call every night and less interest in LTx
 - This was mode of post-grad educations is NOT commensurate with Optimal Life Balance
 - Case Immersion is thus at a retarded pace
 - Harder To Get the Reps in now

- Cost/Efficiency Issues now Confounding issue

Incorporating New Technology into Practice

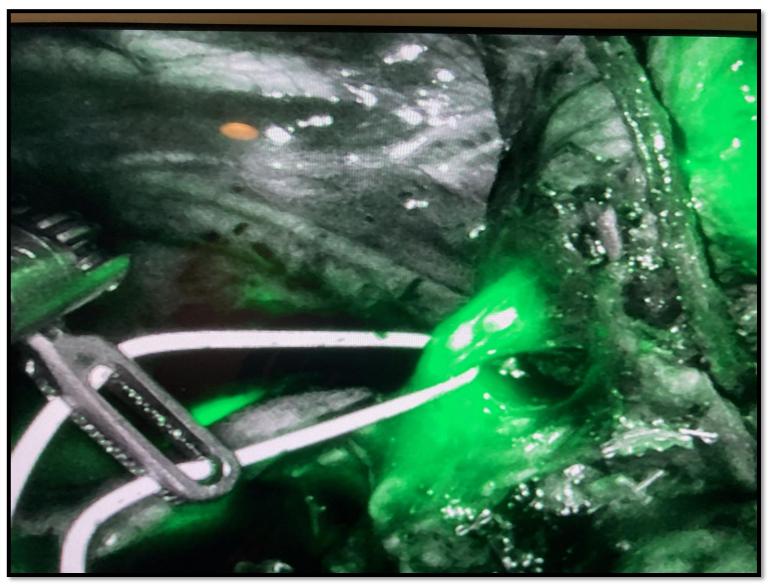
Erin A Gillaspie, MD, MPH, FACS Assistant Professor of Thoracic Surgery VUMC

Disclosures

- Advisory board: BMS, Astra Zeneca, Genentech
- Speaker: Intuitive

Disclosures

- I love adventures and trying new things
- Critical to continue challenging ourselves



The Gillaspie 5 Step Approach

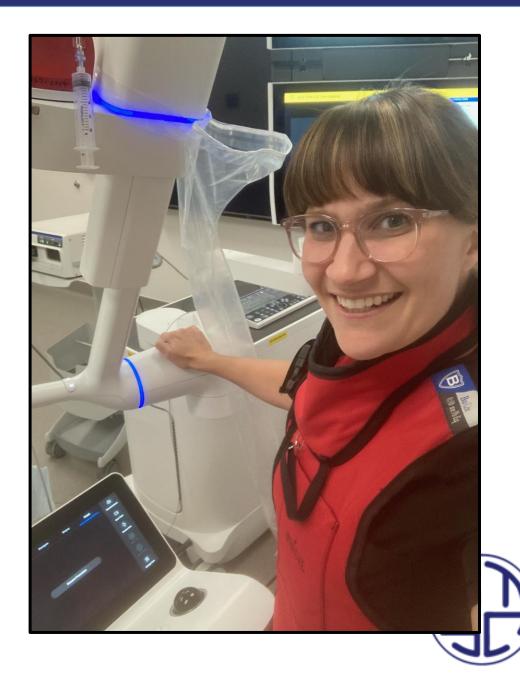
- Know the why/Confirm value add
- Communicate plans
- Build the team (find your champion)
- Training and practice make perfect!
- Monitor and measure outcomes

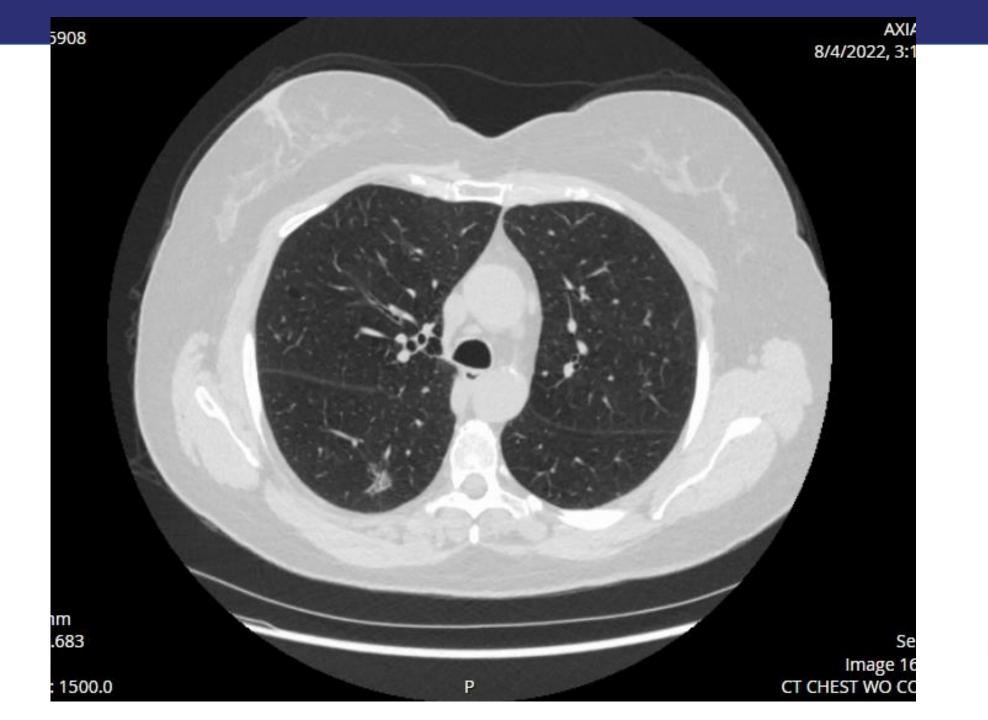
Robotic Ion Program: Biopsy and Localization

Know Your Why

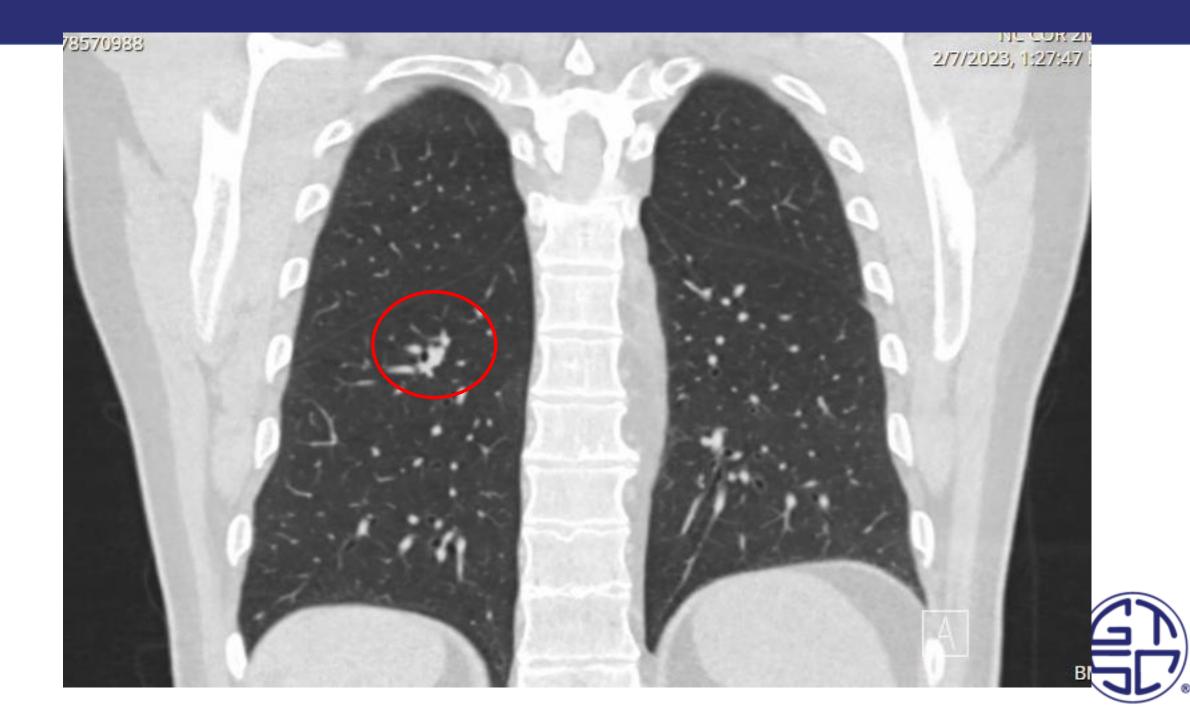
- Enhance sublobar resection program
- Liberalize times technology is available

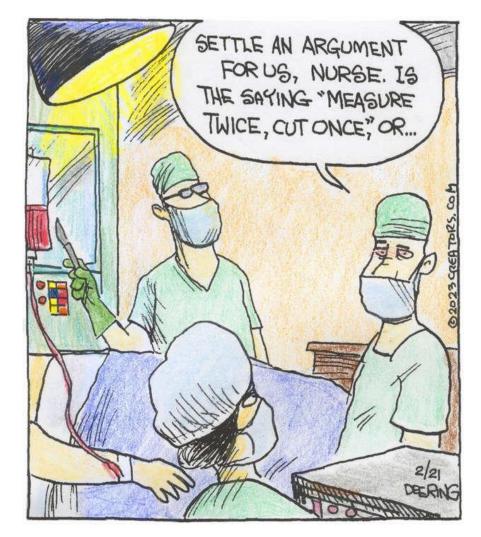
Value of the Procedure


- Value add?
 - Expands a service to more patients
- Added time?
 - Decrease time
- Added cost?
 - Decreased OR time


Don't Skimp on Training

- Orientation to the technology
- In person simulation
 - Take the team along
- Proctoring to reinforce good habits
- Set up cases ahead of time
 - Use the skills or lose the skills!




Build the Team

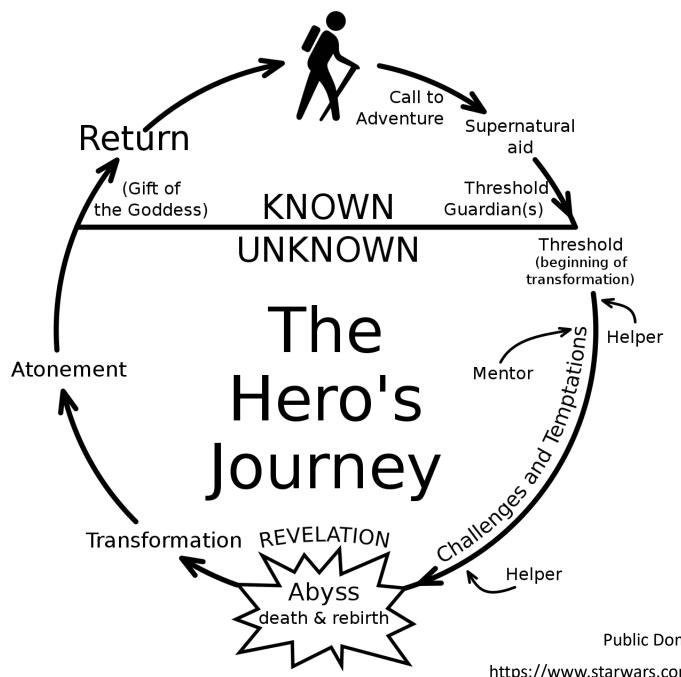
- Communication
- Feasibility/Availability
- Identify a Champion
- Set a time frame to begin

Monitor and Measure

- Measure efficiency
 - Average of 10 minutes
- Patient value
 - Subsolid GGO
- Additional outcomes
 - Teaching

Thank You

Learning RAMIE: A Surgeon's Journey

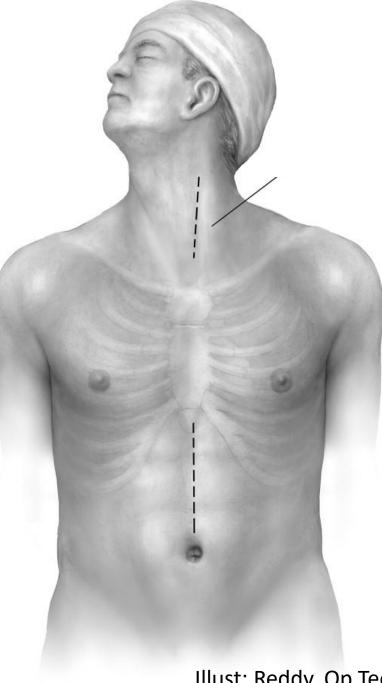

Melanie A. Edwards, MD

Thoracic Surgery Site Medical Director

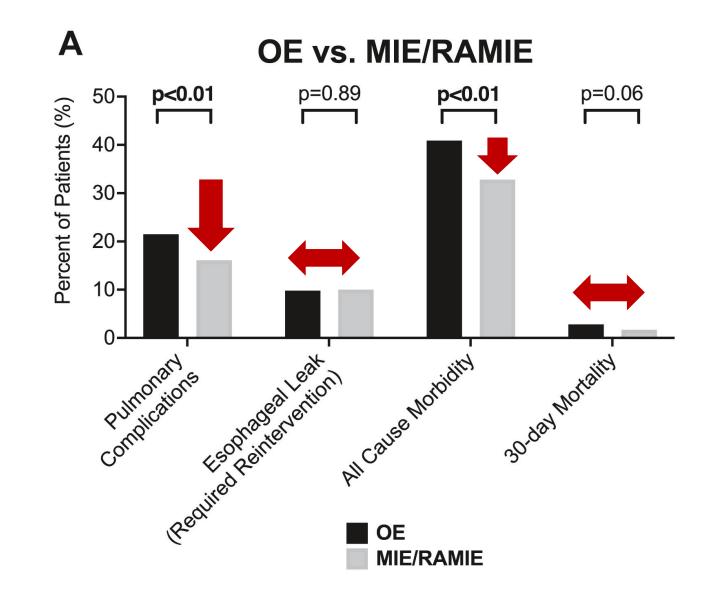
Trinity IHA Cardiovascular & Thoracic Surgery, Ypsilanti MI

Disclosures

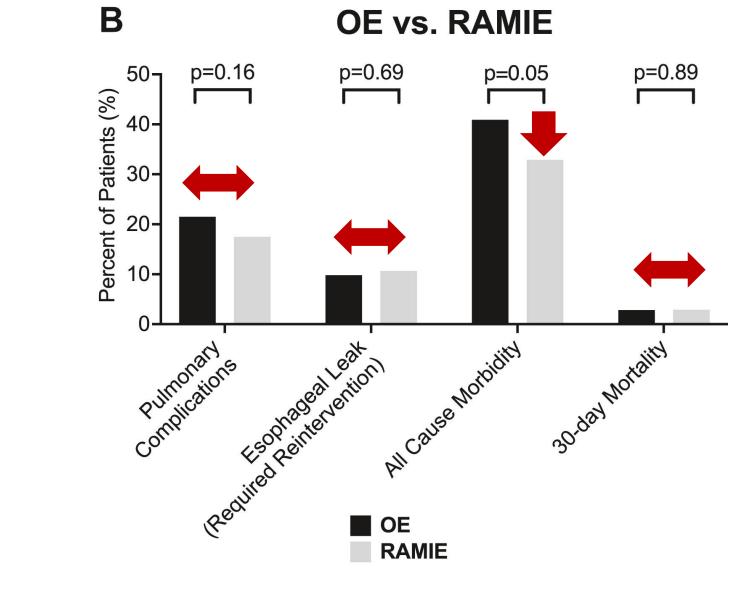
Astra Zeneca Advisory Panel



Public Domain, https://commons.wikimedia.org/w/index.php?curid=10284342

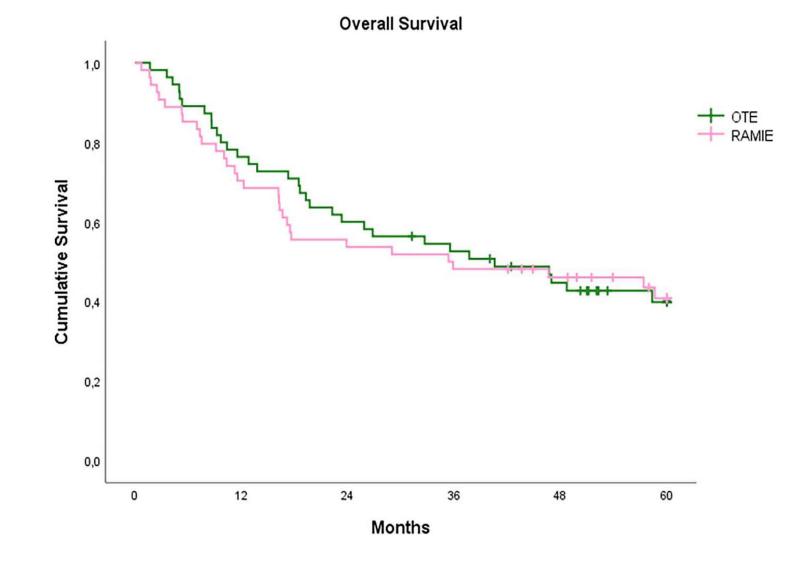

https://www.starwars.com/databank/luke-skywalker?image_id=5390fdbd0a172d315d0004e4

Resistance


10% leak rate

Illust: Reddy, Op Tech Cardiovasc Thorac Surg 2016

The Call

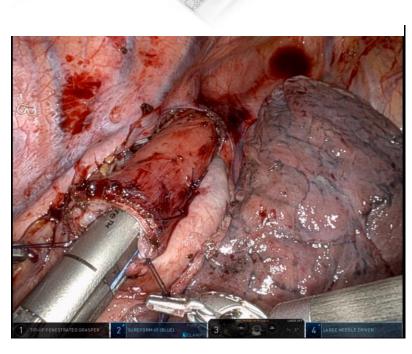

Turner et al, J Surg Res 2023

The Call

Turner et al, J Surg Res 2023

ROBOT Trial Long-Term Oncologic Outcomes

The Call


de Groot et al, Dis Esoph 2020

Kumari Adams, MD FACS

Laparoscopic Supportive foregut mentor/proctor experience Favorable "Same" Robotic anastomosis experience

Stapling side-to-side gastroesophageal anastomosis

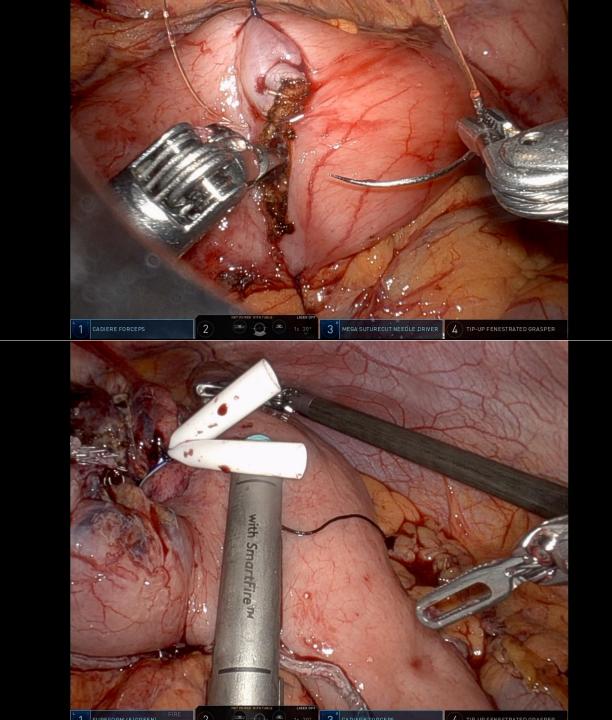
Hurdles

- Low volume
- Limited MIE experience
- Transition to Ivor Lewis
- "Same" anastomosis

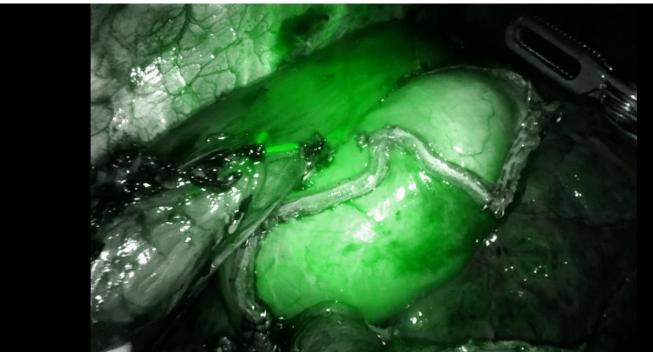
Threshold

Benign robotic foregut

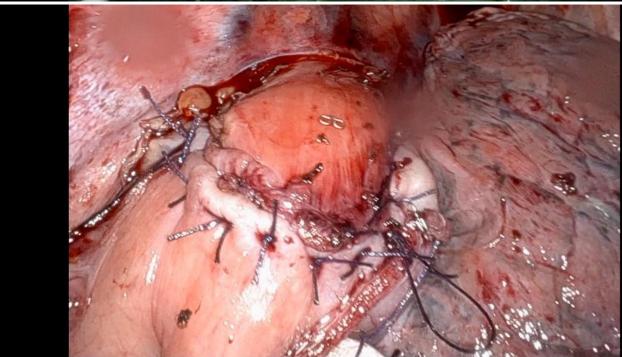
All eligible cases


At the bedside/console for all partner's cases

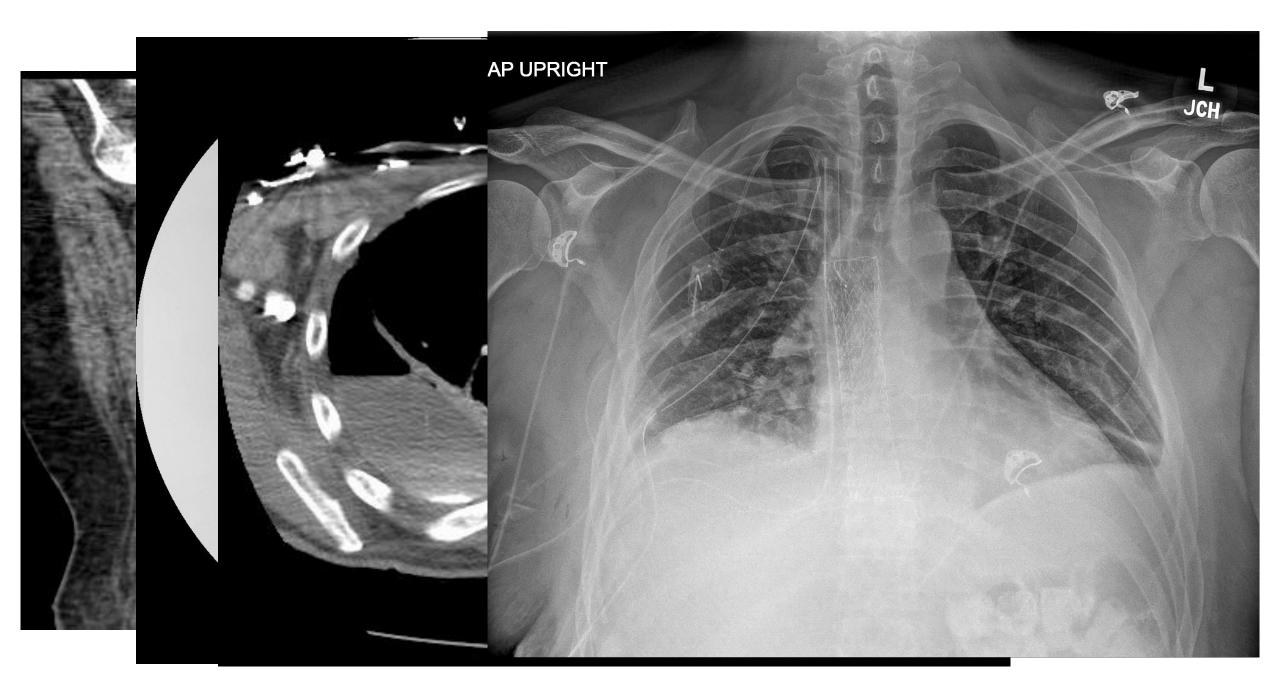
Deep dive into the operative steps

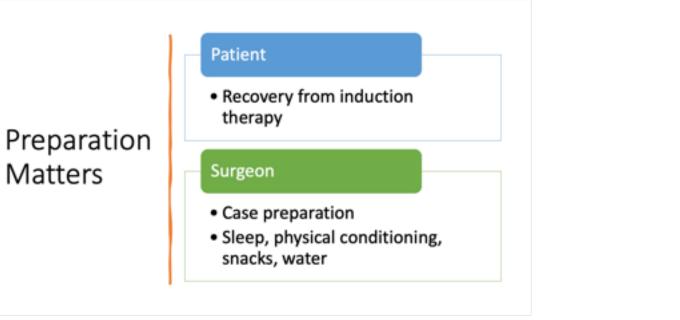

• • • • • • • • • • •

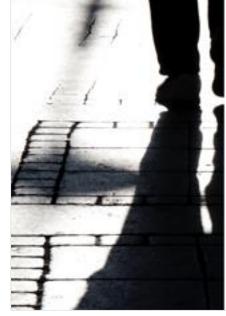
Challenges & Temptations

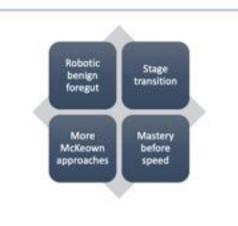


.


Challenges & Temptations

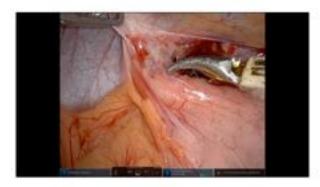



AND SO IT BEGINS


The Abyss

IF YOU'RE GOING THROUGH HELL, KEEP GOING - Anonymous

Walk Before You Run



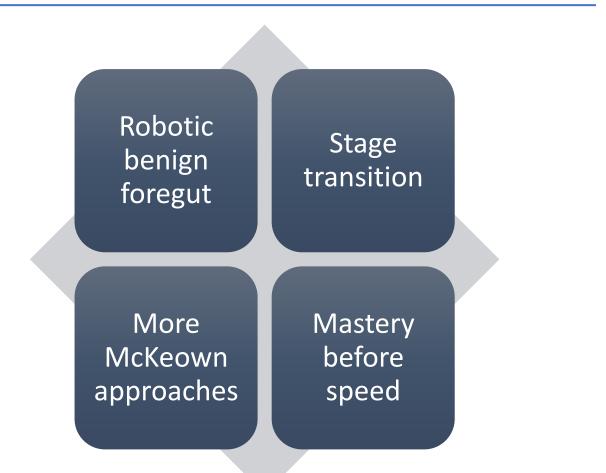
Transformation

More is Not Better

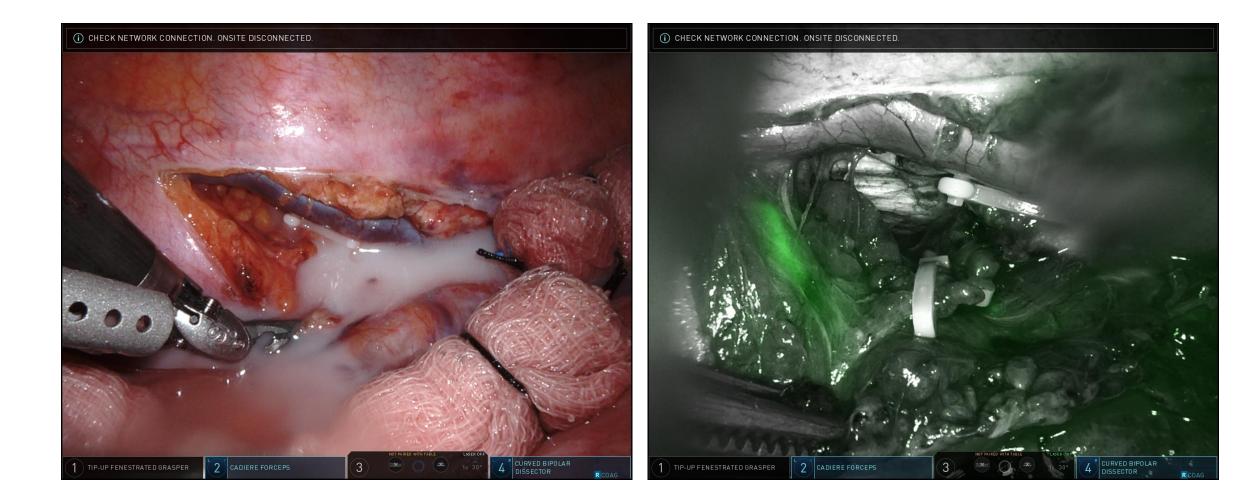
Mobilize, Mobilize, Mobilize

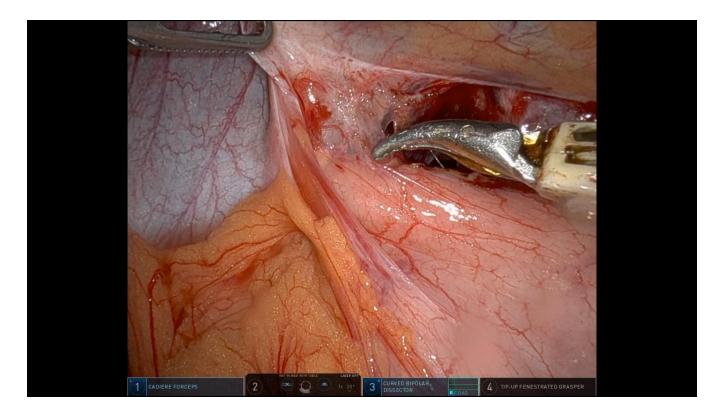
Preparation Matters

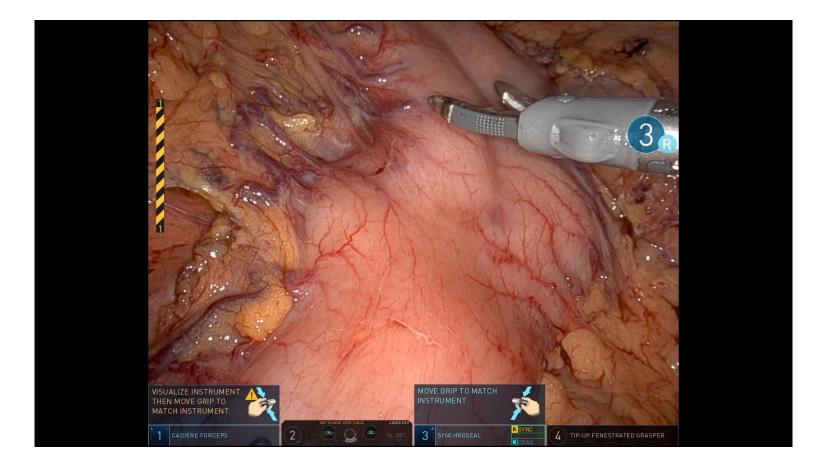
Patient

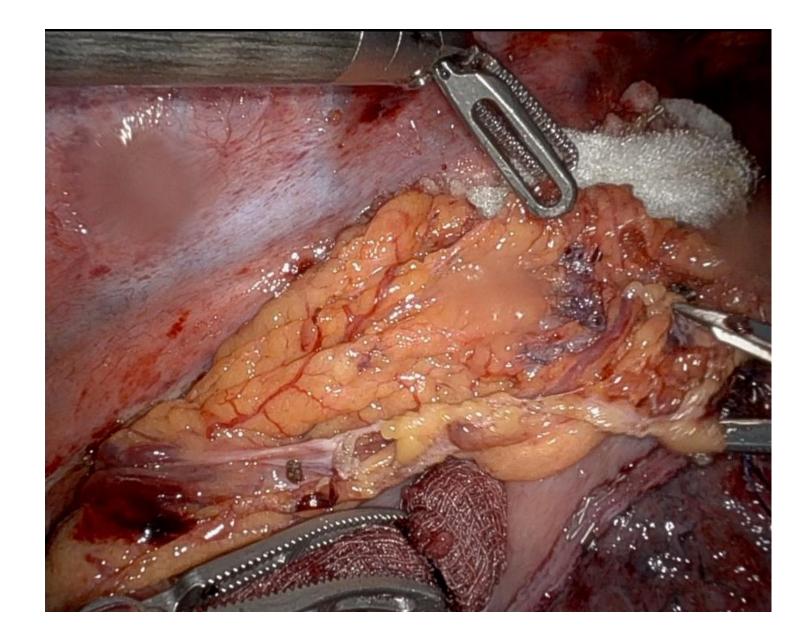

Recovery from induction therapy

Surgeon


- Case preparation
- Sleep, physical conditioning, snacks, water


Walk Before You Run


More is Not Better


Mobilize, Mobilize, Mobilize

Pink & Green in the Belly

Flap It

Diseases of the Esophagus (2022), 1–11 https://doi.org/10.1093/dote/doac089

ISDE

Systematic Review and Meta-analysis

Learning curve for adoption of robot-assisted minimally invasive esophagectomy: a systematic review of oncological, clinical, and efficiency outcomes

	During LC	Post LC	No. Cases for LC
Operative time (min)	249-496	215-431	16-80
Lymph node yield (no)	4-23	5-45	18-73
Leak rate (%)	12-23	2-10	80-82
30-day morbidity (%)	19-67	7-38	20-51

RAMIE Learning Curve

Pickering et al, Dis Esophagus, 2022

STSGTDB Esophagectomy Outcomes

Robotic Esophagectomy Trends and Early Surgical Outcomes: The US Experience

Puja Gaur Khaitan, MD,¹ Andrew M. Vekstein, MD,^{2,3} Dylan Thibault, MS,³ Andrzej Kosinski, PhD,^{3,4} Matthew G. Hartwig, MD,² Mark Block, MD,⁵ Henning Gaissert, MD,⁶ and Andrea S. Wolf, MD, MPH⁷

Endpoint	AOR	95% CI	
Pulmonary Complications			
Open	Ref		
MÌE	0.98	0.78-1.23	
RAMIE	1.02	0.84-1.25	
Anastomotic Leak			
Open	Ref		
MIE	1.12	0.89-1.41	
RAMIE	1.53	1.14-2.04	
Anastomotic Leak - Surgical			
Open	Ref		
MIE	1.07	0.83-1.37	_
RAMIE	1.60	1.17-2.19	
Anastomotic Leak - Medical			
Open	Ref		
MÌE	1.16	0.86-1.57	
RAMIE	1.36	0.93-1.98	
Reoperation			• • • • • • • • • • • • • • • • • • •
Open	Ref		
MÌE	0.97	0.81-1.17	
RAMIE	1.24	1.00-1.53	
Operative Mortality			• • • • • • • • • • • • • • • • • • •
Öpen	Ref		
MÌE	0.85	0.63-1.14	
RAMIE	0.65	0.44-0.98	
			0.50 0.75 1.0 1.25 1.5 2.0 2.5

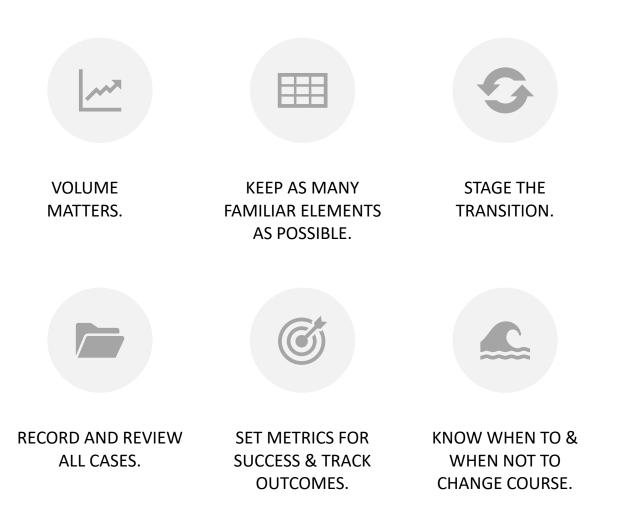
Khaitan et al, Ann Thorac Surg 2023

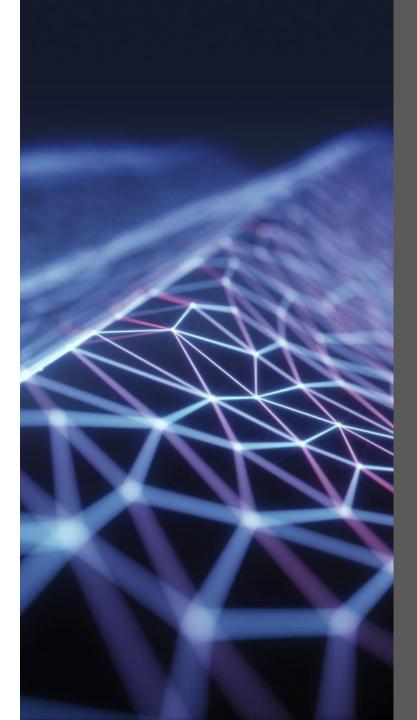
Ongoing Challenges

Expert Advice

ICG: Gastroepiploic & anastomosis

Extensive Kocher


MIE experience helps


Keep same anastomosis you are comfortable with.

Every step counts

Dr. Lana Schumacher-Beal Director, Thoracic Robotic Surgery, MGH

Revelation

Questions?

- <u>Melanie Edwards@ihacares.com</u>
- 617-817-1934
- Twitter: @medwards_md

Dennis Wigle GTSC meeting, Duck Key FLA Saturday March 11, 2023

How do we learn to use new technologies?

Connecting through company representatives vs formal courses vs colleagues

Some relatively mature systems to do this (eg. Intuitive) vs others less formal/nonexistent

What if GTSC could be a portal for accessing training in new technology?

How this could work:

Companies with new technology and training mentors accessible through GTSC Innovation Hub

GTSC innovation Hub as a "connector" for surgeons to access the training and mentorship they need to get started with trusted partners

Pilot launch 2023:

Utilize Intuitive training programs for robotic bronchoscopy and/or robotic surgery – connect through GTSC

2-3 staff surgeons in a position to dedicate time to training

2024, 2025:

Successful pilot launch

Expand with 1-2 further added companies/technologies

Mentee Profile, Criteria Requirements, & Identification Process

lon	lon	DV	DV
(New to robotic	(Limited robotic	(New to robotic	(Limited robotic
Training)	experience	Training)	experience
	w/desire to		w/desire to
	optimize skills 25-		optimize skills 25-
	50 cases per yr.)		50 cases per yr.)

Identifying potential mentees:

- Announcement sent to GTSC Members for applications
- Mentoring program committee to identify mentor & mentees
- Mentee will need to have sign-off approval by their institution (CEO/Dept Chair) & Ion/DaVinci Field Representative

Mentee Profile, Criteria Requirements, & Identification Process

lon	lon	DV	DV
(New to robotic	(Limited robotic	(New to robotic	(Limited robotic
Training)	experience	Training)	experience
	w/desire to		w/desire to
	optimize skills 25-		optimize skills 25-
	50 cases per yr.)		50 cases per yr.)

Criteria Requirements:

- Must be able to dedicate no less than 12 months of participation of mentoring program
- Must have access to Ion and/or a 4th generation da Vinci Xi System at home institution

Pilot launch 2023:

Email communication to members Spring/early summer 2023

Goal of training starting Fall 2023

Ongoing evaluation of membership needs for further partners

Thanks & enjoy the meeting! wigle.dennis@mayo.edu

