Pulmonary Function Improvement after Lung Volume Reduction Surgery: A Twenty-year Experience

J. Schroeder, BA; C. Meldrum PhD, RN; K. Lagisetty, MD; E. Wakeam, MD; J. Lin, MD; W. Lynch, MD; A.C. Chang, MD; and R.M. Reddy, MD

Disclosures

Disclosures

Reddy, RM-Intuitive Surgical, Auris Health, Medtronic, Genentech, On Target Labs

Lin, J-Intuitive Surgical

Non relevant to this talk

National Emphysema Treatment Trial (NETT) Findings

- NETT distinguished favorable versus unfavorable characteristics of candidates for LVRS
 - Recommended for upper-lobepredominant (Fishman, et al. 2003)
- LVRS, supplemental oxygen and smoking cessation improve survival in selected patients (Criner, et al. 2011)
- LVRS remains an underused therapy

Objective

To evaluate post-operative outcomes of lung volume reduction surgery (LVRS) at a high-volume institution that participated in the National Emphysema Treatment Trial (NETT) and continues to follow NETT criteria.

Criteria for LVRS

Criteria for LVRS

Inclusion

History and physical examination consistent with emphysema CT Scan evidence of bilateral upper-lobe-dominant emphysema Pre-rehabilitation post-bronchodilator TLC≥100% and RV≥150%

FEV1 ≤45%

PaCO₂≤60mmHg

PaO₂≥45mmHg

Cotinine ≤ 13.7ng/ml

BMI \leq 31.1 (males) or \leq 32.3 (females)

Quit smoking at least 4 months before surgery Completion of pre-rehabilitation assessments

Completion of NETT rehabilitation program

Exclusion

Daily use of prednisone >20mg

No other major disease

Previous heart or lung surgery

Criteria for study based on NETT

Methods

Patients who underwent LVRS identified between July 1998 and April 2019

Chart review- demographics, pre-operative diagnostic tests (PFTs, 600m walk, oxygen supplementation), procedural information, and post-operative outcomes recorded

Analyzed whole cohort data

Divided cohort based on procedure type (MS vs. VATS)

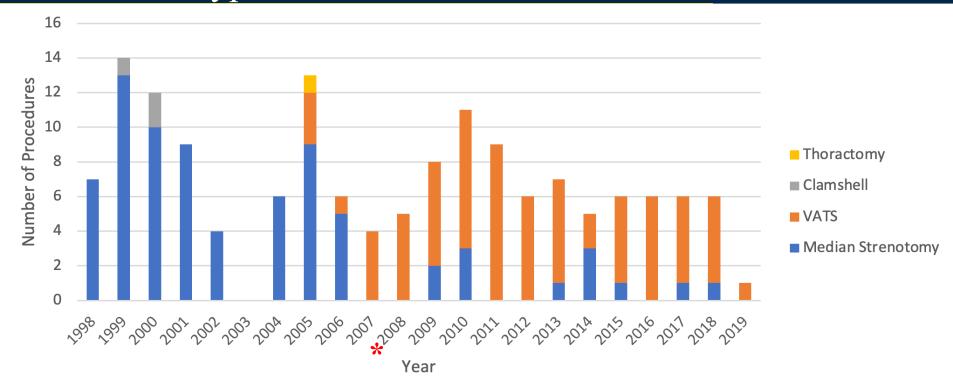
Analyzed data based on procedure type

Cohort Demographics

Average age was 62±7.6 years

Total of 151 patients

Average smoking history of 54±24.3 pack year


Cohort Pre-operative Pulmonary Function Tests

Pre-Op Pulmonary Function Tests	Cohort
FVC (L) (n=150)	2.4±0.76
FEV1 (L) (n=150)	0.72±0.2
FEV1 % of Predicted Value (n=150)	27.4±6.9
FEV1:FVC % (n=150)	30.9±5.98
Carbon Monoxide Diffusing Capacity (mL/min/mmHg) (n=122)	8.97±4.2
Carbon Monoxide Diffusing Capacity % of Predicted Value (n=122)	35.6±13.4
Total Lung Capacity (L) (n=140)	8.5+10.7

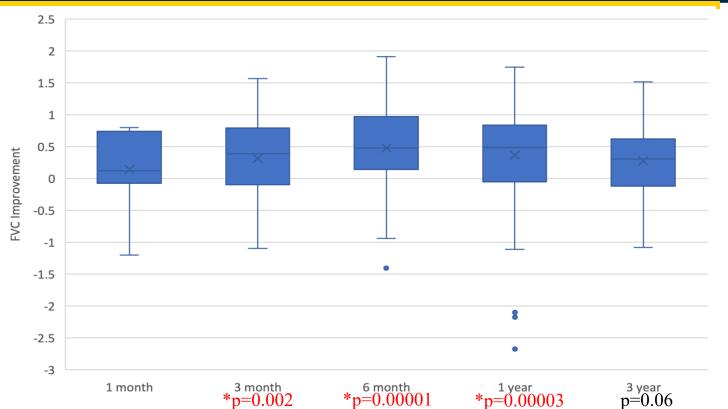
All subjects met NETT criteria for pre-operative PFTs

Procedure Type

MS vs. VATS

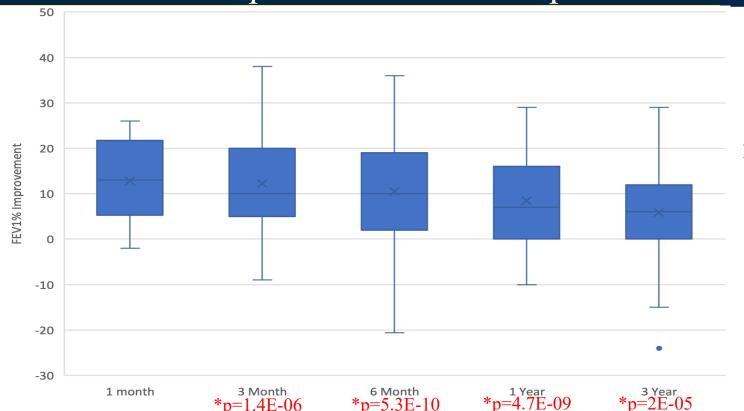
	Median Sternotomy (n=75)	VATS (n=72)
Characteristics		
Age at Surgery (yr)*	63±7	60.6±7.9
Sex- no. (%)		
Female	31 (41)	38 (53)
Male	44 (59)	34(47)
Body Mass Index	25.4±4.14	25.9±4.03
Smoking History (Pack-years) *	59.5±26.4	49.2±21.6
No. of years quit before surgery	7.26±6.63	6.1±6.54
Pre-Op Supplemental Oxygen (L)	1.8±1.5	2.4±1.5
Pre-Op Exercise Capacity (watt)	37.5±16.8	35.7±19.6
Distance walked in 6 min (ft).	886±468.5	813.1±437.9
PaO2- mmHg*	65.8±13.2	78.9±20.4
PaCO2- mmHg	41.7±4.04	42.9±5.38
Pre-Op Pulmonary Function Tests		
FVC (L)	2.47±0.76	2.31±0.75
FEV1 (L)	0.72±0.2	0.72±0.2
FEV1 % of Predicted Value	27.7±7.45	27.9±6.43
Carbon Monoxide Diffusing Capacity (mL/min/mmHg)	9.1±3.4	8.9±4.7
Carbon Monoxide Diffusing Capacity % of Predicted	25.2.2	25.0.45.5
Value	35.3±9.7	35.8±15.6
Total Lung Capacity (L)	7.99±4.2	9.2±15.4

VATS group was younger (p=0.045) and presented with fewer smoking pack-years (p=0.013)

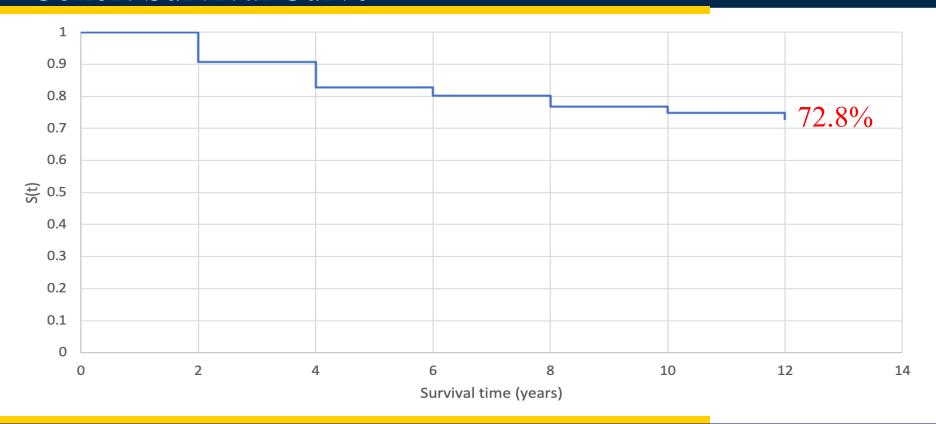

Perioperative Outcomes

	Median Sternotomy (n=75)	VATS (n=72)
Complications	No. (%)	No. (%)
New CT placed	6 (8)	7 (10)
Respiratory distress	13 (17)	22 (31)
Respiratory failure	7 (9)	10 (14)
Pneumonia	20 (27)	14 (19)
Reintubation	10 (13)	10 (13)
Tracheostomy	2 (3)	1 (1)
Afib_SVT	16 (21)	25 (35)
PE	0 (0)	1 (1)
MI	0 (0)	2 (3)
AKI	8 (11)	3 (4)
Wound Infection	3 (4)	1 (1)
Re-op	8 (11)	5 (7)
Re-admit to ICU	8 (11)	10 (14)
Hospital Mortality	9 (12)	5 (7)
SQ emphysema* (p=0.03)	6 (8)	15 (21)
Initial Air leak* (p=0.03)	45 (60)	55 (76)
Prolong air leak	37 (49)	45 (63)
	Mean ± STD	Mean ± STD
Hospital LOS	11.37±9.56	11.97±10.68
ICU LOS	3.02±6.54	4.52±8.24
Chest tube days	15.63±18.3	15.52±17.29
Ventilator time	0.027±0.23	1.04±4.75
Reintubation Days	2.44±3.84	6.58±8.5
EBL (cc)* (p=0.03)	133±145.2	88.4±130.3
Surgery Duration(min)	192.28±44.7	232.3±155.6

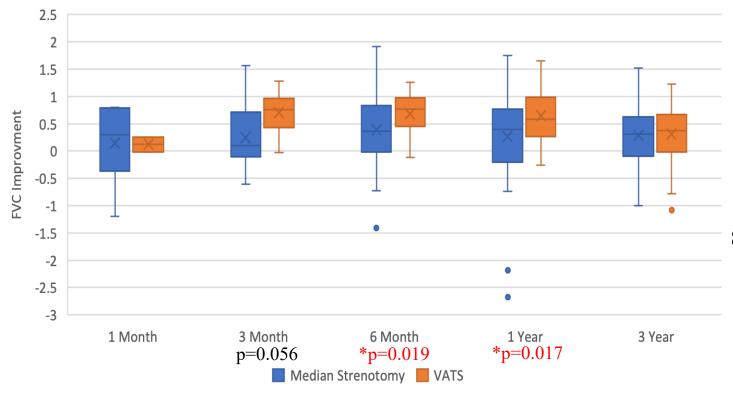
- Decrease in EBL over time*
- VATS associated with increased risk of initial air leaks and subcutaneous emphysema
- No other significant differences between MS and VATS


Cohort Post-operative FVC Improvement

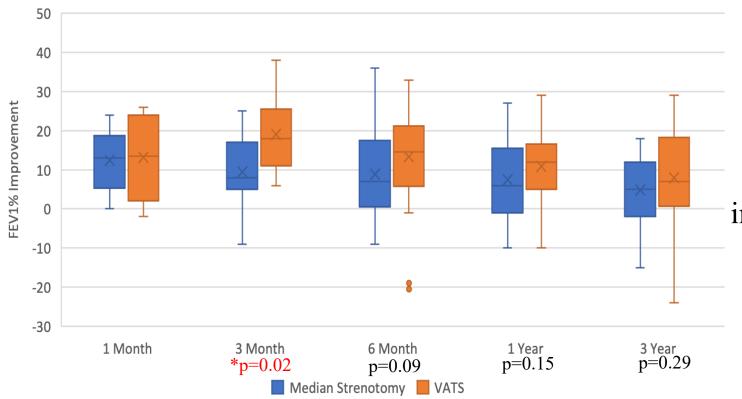
PFTs taken at 3 months, 6 months and 1 year showed significant improvement in FVC compared to pre-operation


Cohort Post-operative FEV1% Improvement

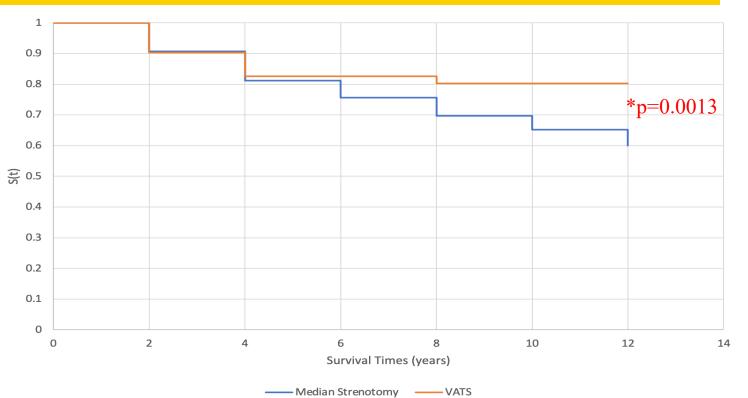
Significant improvement in FEV1% seen at 3 months, 6 months, 1 year, and 3 years



Cohort Survival Curve



Post-operative FVC Improvement by Procedure Type


Significant
difference in
FVC
improvement
seen at 6 months,
1 year in VATS
group

Post-operative FEV1% Improvement by Procedure

Significant difference in FEV1% improvement only seen at 3 months

Survival Curve by Procedure Type

VATS showed improved survival at 12 years post-LVRS when compared to MS

Conclusions

VATS showed improvement in post-operative FVC up to 1 year post-operatively when compared to MS

Patients
undergoing LVRS
had significant
increases in postoperative FVC and
FEV1% lasting up
to 3 years postsurgery

VATS
demonstrated
improved survival
rate 12 years postsurgery*

Thank you! scjulia@med.umich.edu

