

Robotic Navigation with Ion and Monarch Systems

Janani Reisenauer, MD

Vice Chair, Innovation, Dept of Surgery General Thoracic Surgery/Interventional Pulmonary Medicine Mayo Clinic, Rochester MN

Lung Endoscopic Therapies/Ablation

Janani Reisenauer, M.D. Vice Chair, Innovation, Dept of Surgery Thoracic Surgery & Interventional Pulmonary Medicine Mayo Clinic, Rochester MN

Research:

Intuitive Research Grant

Consulting:

Noah Medical, Elucent Navigation, Vergent, Peyent

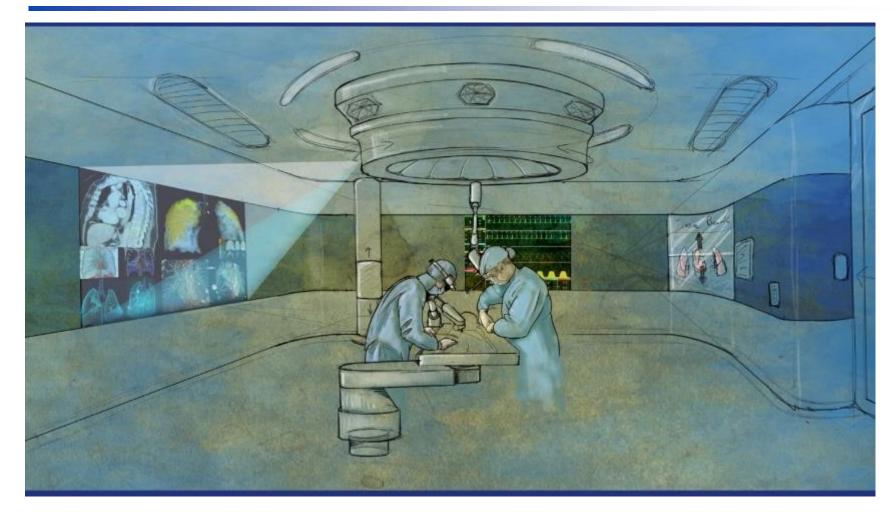
Evolution of treatment for lung cancer

• THE PAST

Surgery only available for early stage lung cancer

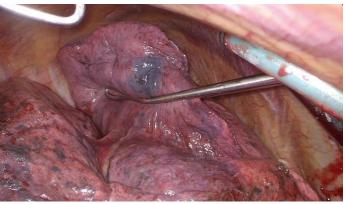
Advanced disease routed to definitive nonsurgical therapies

 THE PRESENT Surgery (MIS, parenchymal sparing)


SABR

Percutaneous ablation

Early Endoluminal trials


THE FUTURE


Current and Future State

Treatment for stage IA NSCLC over time

Holmes, Jordan A., Timothy M. Zagar, and Ronald C. Chen. "Adoption of stereotactic body radiotherapy for stage IA non-small cell lung cancer across the United States." JNCI cancer spectrum 1.1 (2017): pkx003.

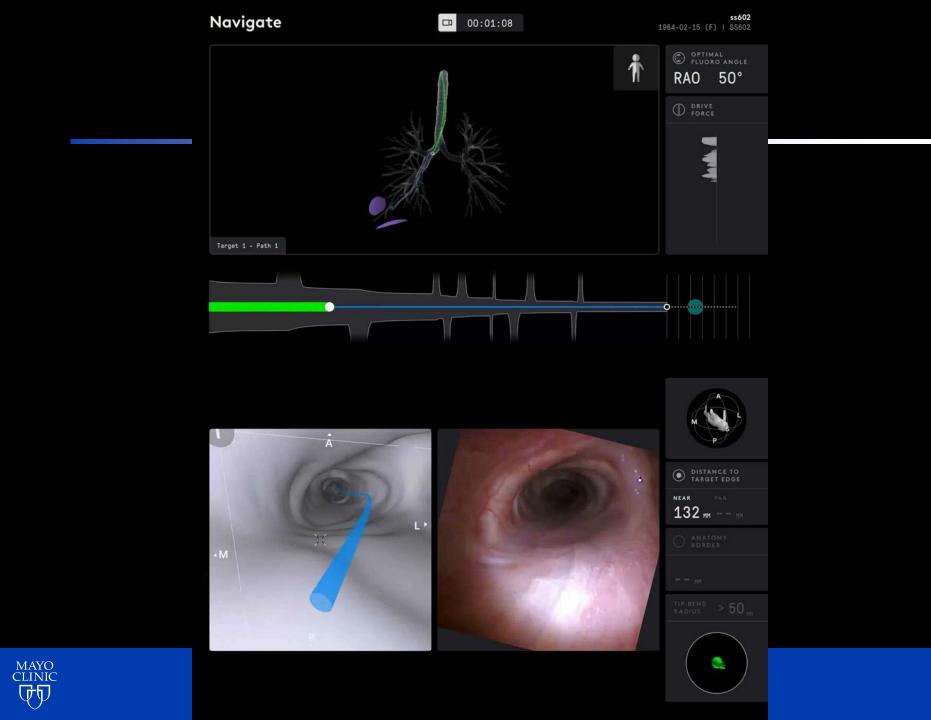
Potential Advantages of Endoluminal Tx

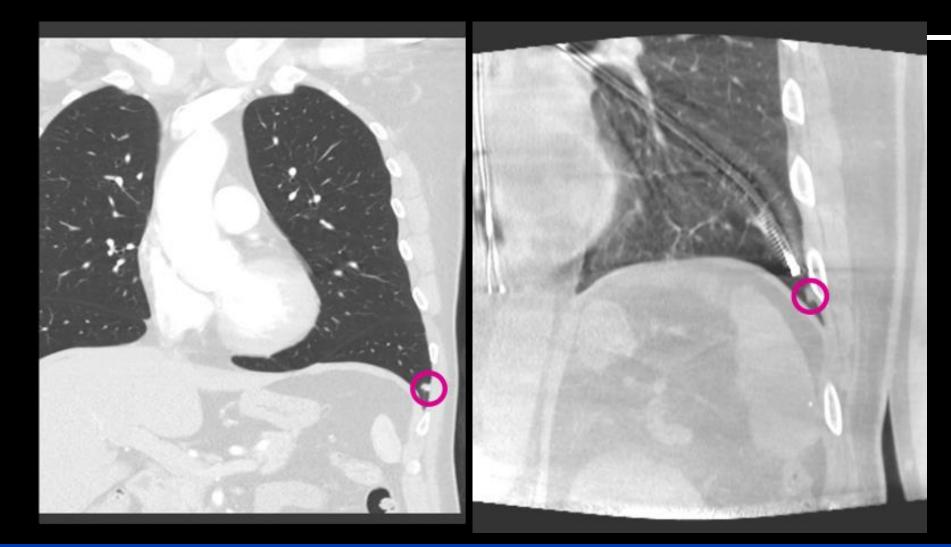
- Minimally Invasive, potential to reduce complications of pneumothorax, BPF
 - No penetration of chest wall or lung pleura, limits air leaks
- Potential to diagnose and treat in same session
 - Diagnose, stage and treat in same session may eliminate additional procedures, time and anxiety
- Viable treatment in population with limited options
 - Compromised patients may benefit from target ablation
- Repeatable treatment opportunity
 - Potentially repeatable procedure
- Previously struggled with reach, stability, and safety

FLEX 1

2019

- Two robotic bronchoscopes approved by the FDA
 - ION
 - Monarch





Navigation Bronchoscopy Technology

Thermal Ablative Therapies

- Radiofrequency ablation (RFA)
 - Most published data
 - Probably better for smaller lesions (T1)
 - About 27% 5 year survival in a few studies for stage I NSCLC¹
- Cryoablation (Cryo)
 - Theoretically more safe, less collateral damage
 - Easier to visualize ablation zone and zone growth as the ablation progresses
 - Interim analyses of largest trial shows 94% local control at 1 year for secondary lung cancer
- Microwave ablation (MWA)
 - Higher frequencies than RFA, faster and hotter ablation zone
 - Only tech with bronchoscopic probes available

Stage I NSCLC after PERC Microwave & Cryoablation

Author (n)	Modality Ablation	Median Follow-up	1-yr Overall Survival	2-yr Overlall Surviva;	3-year Overall survival
Wolf (50)	Microwave	10months	65%	55%	45%
Yang (47)	Microwave	30months	89%	63%	43%
Yamauchi (22)	Cryoablation	23months	N/A	88%	88%
Zemlyak (27)	Cryoablation	33months*	N/A	N/A	77%

MAYO CLINIC 3 Yr survival ranging from 43-88% *median follow-up included patients treated with RFA and surgery

Calvin Ng

Chan JWY, Lau RWH, Ngai JCL, Tsoi C, Chu CM, Mok TSK, Ng CSH. Transbronchial microwave ablation of lung nodules with electromagnetic navigation bronchoscopy guidance-a novel technique and initial experience with 30 cases. Transl Lung Cancer Res. 2021 Apr;10(4):1608-1622.

Kazhu Yasufuku

Motooka, Yamato, et al. "Endobronchial ultrasound-guided radiofrequency ablation of lung tumors and mediastinal lymph nodes: a preclinical study in animal lung tumor and mediastinal adenopathy models." *Seminars in Thoracic and Cardiovascular Surgery*. Vol. 32. No. 3. WB Saunders, 2020.

Pulsed Electric Field

INCITE-ES

- Endoluminal and Percutaneous Approaches
- 40 patients with early Stage NSCLC (1-4 cm)
- Treat and resect study
- 3 sites in Europe recruiting

Kinzie Vermont

LUKT02

Future Directions

- Cryotherapy
- Vapor Therapy
- PDT

Conclusions

- With the evolution of technology and technique, treatment of early stage lung cancer has progressed from open to VATS/RATS
- Time will tell if this will progress to endoscopic surgery
 - To replace surgery as the standard of care, have to demonstrate feasibility and adequate locoregional control with minimal complication risk

Multiple trials are underway/being drafted for various ablative technologies

Its only a matter of time before the technique is becoming a wide spread treatment option \rightarrow as surgeons, we have to stay relevant

References

1. Yan, Tristan D., et al. "Systematic review and meta-analysis of randomized and nonrandomized trials on safety and efficacy of video-assisted thoracic surgery lobectomy for early-stage non-small-cell lung cancer." *J Clin Oncol* 27.15 (2009): 2553-2562.

2. Sawada S, Komori E, Yamashita M, et al. Comparison in prognosis after VATS lobectomy and open lobectomy for stage I lung cancer: retrospective analysis focused on a histological subgroup. Surg Endosc. 2007;21:1607–1611.

3. Sugiura H, Morikawa T, Kaji M, Sasamura Y, Kondo S, Katoh H. Long-term benefits for the quality of life after video-assisted thoracoscopic lobectomy in patients with lung cancer. Surg Laparosc Endosc Percutan Tech. 1999;9:403–408.

4. Tashima T, Yamashita J, Nakano S, et al. Comparison of video-assisted minithoracotomy and standard open thoracotomy for the treatment of nonsmall-cell lung cancer. Minim Invasive Ther Allied Technol. 2005;14:203–208.

5. Flores RM, Park BJ, Dycoco J, et al. Lobectomy by video-assisted thoracic (VATS) versus thoracotomy for lung cancer. J Thorac Cardiovasc Surg. 2009;138:11–18.

6. Fan, Jiang, et al. "Sublobectomy versus lobectomy for stage I non-small-cell lung cancer, a meta-analysis of published studies." *Annals of surgical oncology* 19.2 (2012): 661-668.

7.

Comments and Questions

